首页> 外文期刊>Image and Vision Computing >Visual object tracking based on adaptive Siamese and motion estimation network
【24h】

Visual object tracking based on adaptive Siamese and motion estimation network

机译:基于自适应连体和运动估计网络的视觉目标跟踪

获取原文
获取原文并翻译 | 示例

摘要

Recently, convolutional neural network (CNN) has attracted much attention in different areas of computer vision, due to its powerful abstract feature representation. Visual object tracking is one of the interesting and important areas in computer vision that achieves remarkable improvements in recent years. In this work, we aim to improve both the motion and observation models in visual object tracking by leveraging representation power of CNNs. To this end, a motion estimation network (named MEN) is utilized to seek the most likely locations of the target and prepare a further clue in addition to the previous target position. Hence the motion estimation would be enhanced by generating a small number of candidates near two plausible positions. The generated candidates are then fed into a trained Siamese network to detect the most probable candidate. Each candidate is compared to an adaptable buffer, which is updated under a predefined condition. To take into account the target appearance changes, a weighting CNN (called WCNN) adaptively assigns weights to the final similarity scores of the Siamese network using sequence-specific information. Evaluation results on well-known benchmark datasets (OTB100, OTB50 and OTB2013) prove that the proposed tracker outperforms the state-of-the-art competitors. (C) 2019 Elsevier B.V. All rights reserved.
机译:最近,由于卷积神经网络(CNN)强大的抽象特征表示能力,它在计算机视觉的不同领域引起了广泛关注。视觉对象跟踪是计算机视觉中有趣且重要的领域之一,近年来取得了显着的进步。在这项工作中,我们旨在通过利用CNN的表示能力来改进视觉对象跟踪中的运动模型和观察模型。为此,运动估计网络(命名为MEN)用于寻找目标的最可能位置并准备除先前目标位置以外的其他线索。因此,通过在两个合理位置附近生成少量候选对象,可以增强运动估计。然后将生成的候选者输入经过训练的暹罗网络中,以检测最可能的候选者。将每个候选对象与可适应的缓冲区进行比较,该缓冲区将在预定义的条件下进行更新。为了考虑目标外观的变化,加权CNN(称为WCNN)使用特定于序列的信息将权重自适应地分配给暹罗网络的最终相似性得分。对著名基准数据集(OTB100,OTB50和OTB2013)的评估结果证明,所提出的跟踪器优于最新的竞争对手。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号