首页> 外文期刊>Image and Vision Computing >Beyond saliency: Understanding convolutional neural networks from saliency prediction on layer-wise relevance propagation
【24h】

Beyond saliency: Understanding convolutional neural networks from saliency prediction on layer-wise relevance propagation

机译:超越显着性:从分层关联传播的显着性预测中了解卷积神经网络

获取原文
获取原文并翻译 | 示例

摘要

Despite the tremendous achievements of deep convolutional neural networks (CNNs) in many computer vision tasks, understanding how they actually work remains a significant challenge. In this paper, we propose a novel two-step understanding method, namely Salient Relevance (SR) map, which aims to shed light on how deep CNNs recognize images and learn features from areas, referred to as attention areas, therein. Our proposed method starts out with a layer-wise relevance propagation (LRP) step which estimates a pixel-wise relevance map over the input image. Following, we construct a context-aware saliency map, SR map, from the LRP-generated map which predicts areas close to the foci of attention instead of isolated pixels that LRP reveals. In human visual system, information of regions is more important than of pixels in recognition. Consequently, our proposed approach closely simulates human recognition. Experimental results using the ILSVRC2012 validation dataset in conjunction with two well-established deep CNN models, AlexNet and VGG-16, clearly demonstrate that our proposed approach concisely identifies not only key pixels but also attention areas that contribute to the underlying neural network's comprehension of the given images. As such, our proposed SR map constitutes a convenient visual interface which unveils the visual attention of the network and reveals which type of objects the model has learned to recognize after training. The source code is available at https://github.com/HeylLi/Salient-Relevance-Propagation. (C) 2019 Elsevier B.V. All rights reserved.
机译:尽管在许多计算机视觉任务中深层卷积神经网络(CNN)取得了巨大成就,但了解它们的实际工作方式仍然是一个巨大的挑战。在本文中,我们提出了一种新颖的两步理解方法,即“显着相关性”(Salient Relevance(SR)图),旨在阐明CNN识别图像的深度以及从区域(称为关注区域)中学习特征的能力。我们提出的方法从分层相关传播(LRP)步骤开始,该步骤估计输入图像上的像素相关映射。接下来,我们从LRP生成的图构建一个上下文感知的显着图SR图,该图预测靠近关注焦点的区域而不是LRP揭示的孤立像素。在人类视觉系统中,区域信息比像素信息更重要。因此,我们提出的方法紧密模拟了人类的认知。使用ILSVRC2012验证数据集以及两个完善的深度CNN模型AlexNet和VGG-16进行的实验结果清楚地表明,我们提出的方法不仅可以简明地识别关键像素,而且还可以识别有助于基础神经网络对神经网络理解的关注区域。给定图像。因此,我们提出的SR地图构成了方便的视觉界面,它揭示了网络的视觉注意力,并揭示了模型在训练后已学会识别的对象类型。源代码位于https://github.com/HeylLi/Salient-Relevance-Propagation。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号