首页> 外文期刊>Image and Vision Computing >A Bayesian similarity measure for deformable image matching
【24h】

A Bayesian similarity measure for deformable image matching

机译:用于变形图像匹配的贝叶斯相似性度量

获取原文
获取原文并翻译 | 示例

摘要

We propose a probabilistic similarity measure for direct image matching based on a Bayesian analysis of image deformations. We model two classes of variation in object appearance f intra--object and extra--object. The probability density functions for each class are then estimated from training data and used to compute a similarity measure based on the a posteriori probabilities. Furthermore, we use a novel representation for characterizing image differences using a deformable technique for obtaining pixel--wise correspondences. This representation, which is based on a deformable 3D mesh in XYI-space, is then experimentally compared with two simpler representations: intensity differences and optical flow. The performance advantage of our deformable matching technique is demonstrated using a typically hard test set drawn from the US Army's FERET face database.
机译:我们提出了一种基于图像变形的贝叶斯分析的概率相似性度量用于直接图像匹配。我们对对象外观的两类变化建模-内部对象和外部对象。然后从训练数据中估计每个类别的概率密度函数,并根据后验概率来计算相似性度量。此外,我们使用一种新颖的表示法来描述图像差异,并使用一种可变形的技术来获得像素方向的对应关系。然后,将该表示基于XYI空间中的可变形3D网格的表示形式与两个更简单的表示形式进行实验比较:强度差和光流。我们的变形匹配技术的性能优势已通过从美国陆军FERET人脸数据库提取的典型硬测试集得到了证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号