首页> 外文期刊>Image and Vision Computing >An observation-constrained generative approach for probabilistic classification of image regions
【24h】

An observation-constrained generative approach for probabilistic classification of image regions

机译:图像区域概率分类的观察约束生成方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a probabilistic region classification scheme for natural scene images. In conventional generative methods, a generative model is learnt for each class using all the available training data belonging to that class. However, if an input image has been generated from only a subset of the model support, use of the full model to assign generative probabilities can produce serious artifacts in the probability assignments. This problem arises mainly when the different classes have multimodal distributions with considerable overlap in the feature space. We propose an approach to constrain the class generative probability of a set of newly observed data by exploiting the distribution of the new data itself and using linear weighted mixing. A Kullback-Leibler Divergence-based fast model selection procedure is also proposed for learning mixture models in a low dimensional feature space. The preliminary results on the natural scene images support the effectiveness of the proposed approach.
机译:在本文中,我们提出了一种自然场景图像的概率区域分类方案。在传统的生成方法中,使用属于该类别的所有可用训练数据为每个类别学习一个生成模型。但是,如果仅从模型支持的子集生成输入图像,则使用完整模型分配生成概率可能会在概率分配中产生严重的伪像。当不同类别具有在特征空间中有大量重叠的多峰分布时,会出现此问题。我们提出一种方法,通过利用新数据本身的分布并使用线性加权混合来约束一组新观察到的数据的类生成概率。还提出了一种基于Kullback-Leibler散度的快速模型选择程序,用于学习低维特征空间中的混合模型。关于自然场景图像的初步结果支持了所提出方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号