首页> 外文期刊>Image and Vision Computing >A Markov random field image segmentation model for color textured images
【24h】

A Markov random field image segmentation model for color textured images

机译:彩色纹理图像的马尔可夫随机场图像分割模型

获取原文
获取原文并翻译 | 示例

摘要

We propose a Markov random field (MRF) image segmentation model, which aims at combining color and texture features. The theoretical framework relies on Bayesian estimation via combinatorial optimization (simulated annealing). The segmentation is obtained by classifying the pixels into different pixel classes. These classes are represented by multi-variate Gaussian distributions. Thus, the only hypothesis about the nature of the features is that an additive Gaussian noise model is suitable to describe the feature distribution belonging to a given class. Here, we use the perceptually uniform CIE-L~*u~*v~* color values as color features and a set of Gabor filters as texture features. Gaussian parameters are either computed using a training data set or estimated from the input image. We also propose a parameter estimation method using the EM algorithm. Experimental results are provided to illustrate the performance of our method on both synthetic and natural color images.
机译:我们提出了一个马尔可夫随机场(MRF)图像分割模型,旨在结合颜色和纹理特征。理论框架依靠通过组合优化(模拟退火)的贝叶斯估计。通过将像素分类为不同的像素类别来获得分割。这些类别由多元高斯分布表示。因此,有关特征性质的唯一假设是加性高斯噪声模型适用于描述属于给定类别的特征分布。在这里,我们使用感知上均匀的CIE-L〜* u〜* v〜*颜色值作为颜色特征,并使用一组Gabor滤镜作为纹理特征。高斯参数可以使用训练数据集进行计算,也可以根据输入图像进行估算。我们还提出了一种使用EM算法的参数估计方法。提供实验结果来说明我们的方法在合成和自然彩色图像上的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号