首页> 外文期刊>Image and Vision Computing >Object tracking via appearance modeling and sparse representation
【24h】

Object tracking via appearance modeling and sparse representation

机译:通过外观建模和稀疏表示进行对象跟踪

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a robust tracking method by the combination of appearance modeling and sparse representation. In this method, the appearance of an object is modeled by multiple linear subspaces. Then within the sparse representation framework, we construct a similarity measure to evaluate the distance between a target candidate and the learned appearance model. Finally, tracking is achieved by Bayesian inference, in which a particle filter is used to estimate the target state sequentially over time. With the tracking result, the learned appearance model will be updated adaptively. The combination of appearance modeling and sparse representation makes our tracking algorithm robust to most of possible target variations due to illumination changes, pose changes, deformations and occlusions. Theoretic analysis and experiments compared with state-of-the-art methods demonstrate the effectivity of the proposed algorithm.
机译:本文提出一种结合外观建模和稀疏表示的鲁棒跟踪方法。在此方法中,对象的外观由多个线性子空间建模。然后在稀疏表示框架内,我们构造一个相似性度量来评估目标候选对象与学习的外观模型之间的距离。最后,通过贝叶斯推理实现跟踪,其中使用粒子滤波器来估计随时间变化的目标状态。利用跟踪结果,将自适应地更新学习的外观模型。外观建模和稀疏表示的结合使我们的跟踪算法对由于光照变化,姿势变化,变形和遮挡而导致的大多数可能目标变化具有鲁棒性。理论分析和实验与最先进的方法进行比较,证明了该算法的有效性。

著录项

  • 来源
    《Image and Vision Computing》 |2011年第11期|p.787-796|共10页
  • 作者单位

    Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China;

    Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China;

    Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA;

    National Institutes of Health, Clinical Center, Bethesda, MD 20892, USA;

    Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    target variation; online appearance modeling; sparse representation; bayesian inference;

    机译:目标变化在线外观建模;稀疏表示贝叶斯推理;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号