首页> 外文期刊>Image and Vision Computing >Max-margin Non-negative Matrix Factorization
【24h】

Max-margin Non-negative Matrix Factorization

机译:最大余量非负矩阵分解

获取原文
获取原文并翻译 | 示例

摘要

In this paper we introduce a supervised, maximum margin framework for linear and non-linear Non-negative Matrix Factorization. By contrast to existing methods in which the matrix factorization phase (i.e. the feature extraction phase) and the classification phase are separated, we incorporate the maximum margin classification constraints within the NMF formulation. This results to a non-convex constrained optimization problem with respect to the bases and the separating hyperplane, which we solve following a block coordinate descent iterative optimization procedure. At each iteration a set of convex (constrained quadratic or Support Vector Machine-type) sub-problems are solved with respect to subsets of the unknown variables. By doing so, we obtain a bases matrix that maximizes the margin of the classifier in the low dimensional space (in the linear case) or in the high dimensional feature space (in the non-linear case). The proposed algorithms are evaluated on several computer vision problems such as pedestrian detection, image retrieval, facial expression recognition and action recognition where they are shown to consistently outperform schemes that extract features using bases that are learned using semi-NMF and classify them using an SVM classifier.
机译:在本文中,我们为线性和非线性非负矩阵分解引入了一个监督的最大余量框架。与将矩阵分解阶段(即特征提取阶段)和分类阶段分开的现有方法相比,我们将最大余量分类约束纳入NMF公式中。这导致了关于底面和分离超平面的非凸约束优化问题,我们遵循块坐标下降迭代优化程序来解决该问题。在每次迭代中,针对未知变量的子集,解决了一组凸(约束二次或支持向量机类型)子问题。通过这样做,我们获得了一个基矩阵,该基矩阵在低维空间(在线性情况下)或在高维特征空间(在非线性情况下)使分类器的余量最大化。拟议的算法是针对几种计算机视觉问题(如行人检测,图像检索,面部表情识别和动作识别)进行评估的,这些算法表现出的性能始终优于使用半NMF学习的特征提取特征并使用SVM对特征进行分类的方案分类器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号