首页> 外文期刊>Image and Vision Computing >High-throughput-derived biologically-inspired features for unconstrained face recognition
【24h】

High-throughput-derived biologically-inspired features for unconstrained face recognition

机译:高通量的生物学启发特征,可无限制地识别人脸

获取原文
获取原文并翻译 | 示例

摘要

Many modern computer vision algorithms are built atop of a set of low-level feature operators (such as SIFT [23,24]; HOG [8,3]; or LBP [1,2]) that transform raw pixel values into a representation better suited to subsequent processing and classification. While the choice of feature representation is often not central to the logic of a given algorithm, the quality of the feature representation can have critically important implications for performance. Here, we demonstrate a large-scale feature search approach to generating new, more powerful feature representations in which a multitude of complex, nonlinear, multilayer neuromorphic feature representations are randomly generated and screened to find those best suited for the task at hand. In particular, we show that a brute-force search can generate representations that, in combination with standard machine learning blending techniques, achieve state-of-the-art performance on the Labeled Faces in the Wild (LFW) [19] unconstrained face recognition challenge set. These representations outperform previous state-of-the-art approaches, in spite of requiring less training data and using a conceptually simpler machine learning backend. We argue that such large-scale-search-derived feature sets can play a synergistic role with other computer vision approaches by providing a richer base of features with which to work.
机译:许多现代计算机视觉算法都建立在一组低级特征运算符(例如SIFT [23,24],HOG [8,3]或LBP [1,2])的顶部,这些运算符将原始像素值转换为表示形式更适合后续处理和分类。尽管特征表示的选择通常不是给定算法逻辑的中心,但是特征表示的质量可能对性能产生至关重要的影响。在这里,我们演示了一种大规模特征搜索方法,用于生成新的,功能更强大的特征表示,其中随机生成并筛选大量复杂,非线性,多层的神经形态特征表示,以找到最适合手头任务的特征表示。尤其是,我们证明了蛮力搜索可以生成与标准机器学习混合技术结合使用的表示形式,从而在野外带标签的面孔(LFW)[19]上获得无限制的人脸识别的最新性能挑战集。尽管需要较少的训练数据并使用概念上更简单的机器学习后端,但这些表示仍优于以前的最新方法。我们认为,此类大规模搜索派生的功能集可以通过提供更丰富的功能基础来与其他计算机视觉方法发挥协同作用。

著录项

  • 来源
    《Image and Vision Computing》 |2012年第3期|p.159-168|共10页
  • 作者

    Nicolas Pinto; David D. Cox;

  • 作者单位

    The Rowland Institute at Harvard, Harvard University, Cambridge, MA 02142, United States,McCovem Institute for Brain Research at MIT, Cambridge, MA 02139, United States;

    The Rowland Institute at Harvard, Harvard University, Cambridge, MA 02142, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    face recognition; biologically-inspired;

    机译:人脸识别;生物学启发;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号