首页> 外文期刊>Image and Vision Computing >Context modeling for facial landmark detection based on Non-Adjacent Rectangle (NAR) Haar-like feature
【24h】

Context modeling for facial landmark detection based on Non-Adjacent Rectangle (NAR) Haar-like feature

机译:基于非相邻矩形(HAR)Haar类特征的人脸界标检测上下文建模

获取原文
获取原文并翻译 | 示例

摘要

Automatically locating facial landmarks in images is an important task in computer vision. This paper proposes a novel context modeling method for facial landmark detection, which integrates context constraints together with local texture model in the cascaded AdaBoost framework. The motivation of our method lies in the basic human psychology observation that not only the local texture information but also the global context information is used for human to locate facial landmarks in faces. Therefore, in our solution, a novel type of feature, called Non-Adjacent Rectangle (NAR) Haar-like feature, is proposed to characterize the co-occurrence between facial landmarks and its surroundings, i.e., the context information, in terms of low-level features. For the locating task, traditional Haar-like features (characterizing local texture information) and NAR Haar-like features (characterizing context constraints in global sense) are combined together to form more powerful representations. Through Real AdaBoost learning, the most discriminative feature set is selected automatically and used for facial landmark detection. To verify the effectiveness of the proposed method, we evaluate our facial landmark detection algorithm on BioID and Cohn-Kanade face databases. Experimental results convincingly show that the NAR Haar-like feature is effective to modet the context and our proposed algorithm impressively outperforms the published state-of-the-art methods. In addition, the generalization capability of the NAR Haar-like feature is further validated by extended applications to face detection task on FDDB face database.
机译:自动定位图像中的面部标志是计算机视觉中的重要任务。本文提出了一种新的用于人脸界标检测的上下文建模方法,该方法将上下文约束与局部纹理模型集成在级联的AdaBoost框架中。我们的方法的动机在于基本的人类心理学观察,即不仅局部纹理信息而且全局上下文信息都用于人类在面部中定位面部标志。因此,在我们的解决方案中,提出了一种称为非相邻矩形(NAR)Haar状特征的新颖类型的特征,以从低角度描述面部标志物及其周围环境(即上下文信息)的共现特征级功能。对于定位任务,将传统的类似Haar的特征(表征局部纹理信息)和类似NAR Haar的特征(表征全局意义上的上下文约束)组合在一起以形成更强大的表示。通过Real AdaBoost学习,将自动选择最具区别性的功能集并将其用于面部标志检测。为了验证该方法的有效性,我们在BioID和Cohn-Kanade人脸数据库上评估了我们的人脸标志检测算法。实验结果令人信服地表明,类似于NAR Haar的功能可以有效地简化上下文,并且我们提出的算法令人印象深刻地优于已发布的最新方法。此外,通过扩展应用到FDDB人脸数据库上的人脸检测任务,可以进一步验证NAR Haar类功能的泛化能力。

著录项

  • 来源
    《Image and Vision Computing》 |2012年第3期|p.136-146|共11页
  • 作者单位

    Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China,Graduate University of Chinese Academy of Sciences, Beijing 100049, China;

    Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China;

    Panasonic Singapore Laboratories Pte Ltd (PSL), Tai Seng Industrial Estate 534415, Singapore;

    Panasonic Singapore Laboratories Pte Ltd (PSL), Tai Seng Industrial Estate 534415, Singapore;

    Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    context modeling; face detection; facial landmark detection; NAR haar-like feature; co-occurrence;

    机译:上下文建模;人脸检测面部标志检测;NAR哈尔样特征;同现;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号