首页> 外文期刊>Image and Vision Computing >Estimating layout of cluttered indoor scenes using trajectory-based priors
【24h】

Estimating layout of cluttered indoor scenes using trajectory-based priors

机译:使用基于轨迹的先验估计杂乱的室内场景的布局

获取原文
获取原文并翻译 | 示例

摘要

Given a surveillance video of a moving person, we present a novel method of estimating layout of a cluttered indoor scene. We propose an idea that trajectories of a moving person can be used to generate features to segment an indoor scene into different areas of interest. We assume a static uncalibrated camera. Using pixel-level color and perspective cues of the scene, each pixel is assigned to a particular class either a sitting place, the ground floor, or the static background areas like walls and ceiling. The pixel-level cues are locally integrated along global topological order of classes, such as sitting objects and background areas are above ground floor into a conditional random field by an ordering constraint. The proposed method yields very accurate segmentation results on challenging real world scenes. We focus on videos with people walking in the scene and show the effectiveness of our approach through quantitative and qualitative results. The proposed estimation method shows better estimation results as compared to the state of the art scene layout estimation methods. We are able to correctly segment 90.3% of background, 89.4% of sitting areas and 74.7% of the ground floor.
机译:给定一个移动的人的监视视频,我们提出一种新颖的方法来估算混乱的室内场景的布局。我们提出了一个想法,即移动人的轨迹可用于生成特征,以将室内场景分割为感兴趣的不同区域。我们假设一个静态的未经校准的相机。使用像素级的颜色和场景的透视提示,将每个像素分配到特定的类别,包括客厅,地面或静态背景区域(如墙壁和天花板)。像素级线索沿着类的全局拓扑顺序局部集成,例如坐位对象和背景区域位于地面以上,并受排序约束约束成条件随机场。所提出的方法在具有挑战性的现实世界场景中产生非常准确的分割结果。我们专注于人们在现场行走的视频,并通过定量和定性的结果展示了我们方法的有效性。与现有的场景布局估计方法相比,提出的估计方法显示出更好的估计结果。我们能够正确地分割90.3%的背景,89.4%的起居区和74.7%的底层。

著录项

  • 来源
    《Image and Vision Computing》 |2014年第11期|870-883|共14页
  • 作者单位

    Institute for Information processing (TNT), Leibniz University Hanover, Appelstr. 9A, 30167 Hannover, Germany;

    Institute for Information processing (TNT), Leibniz University Hanover, Appelstr. 9A, 30167 Hannover, Germany;

    Institute for Information processing (TNT), Leibniz University Hanover, Appelstr. 9A, 30167 Hannover, Germany;

    Institute for Information processing (TNT), Leibniz University Hanover, Appelstr. 9A, 30167 Hannover, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Scene segmentation; Trajectory; Scene layout; Semantic context; Conditional random field;

    机译:场景分割;弹道;场景布局;语义上下文;条件随机场;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号