首页> 外文期刊>Image and Vision Computing >Sparse representation with multi-manifold analysis for texture classification from few training images
【24h】

Sparse representation with multi-manifold analysis for texture classification from few training images

机译:稀疏表示与多流形分析,可从少量训练图像中进行纹理分类

获取原文
获取原文并翻译 | 示例

摘要

Texture classification is one of the most important tasks in computer vision field and it has been extensively investigated in the last several decades. Previous texture classification methods mainly used the template matching based methods such as Support Vector Machine and k-Nearest-Neighbour for classification. Given enough training images the state-of-the-art texture classification methods could achieve very high classification accuracies on some benchmark databases. However, when the number of training images is limited, which usually happens in real-world applications because of the high cost of obtaining labelled data, the classification accuracies of those state-of-the-art methods would deteriorate due to the overfitting effect In this paper we aim to develop a novel framework that could correctly classify textural images with only a small number of training images. By taking into account the repetition and sparsity property of textures we propose a sparse representation based multi-manifold analysis framework for texture classification from few training images. A set of new training samples are generated from each training image by a scale and spatial pyramid, and then the training samples belonging to each class are modelled by a manifold based on sparse representation. We learn a dictionary of sparse representation and a projection matrix for each class and classify the test images based on the projected reconstruction errors. The framework provides a more compact model than the template matching based texture classification methods, and mitigates the overfitting effect. Experimental results show that the proposed method could achieve reasonably high generalization capability even with as few as 3 training images, and significantly outperforms the state-of-the-art texture classification approaches on three benchmark datasets.
机译:纹理分类是计算机视觉领域最重要的任务之一,并且在过去的几十年中进行了广泛的研究。先前的纹理分类方法主要使用基于模板匹配的方法(例如,支持向量机和k最近邻)进行分类。给定足够的训练图像,最新的纹理分类方法可以在某些基准数据库上实现很高的分类精度。但是,当训练图像的数量受到限制时(通常在现实世界中会发生这种情况,原因是获取标记数据的成本很高),由于过拟合效果,这些最新方法的分类准确性会降低。本文我们旨在开发一种新颖的框架,该框架可以仅使用少量训练图像就可以正确地对纹理图像进行分类。考虑到纹理的重复性和稀疏性,我们提出了一种基于稀疏表示的多流形分析框架,用于从少量训练图像进行纹理分类。通过比例尺和空间金字塔从每个训练图像生成一组新的训练样本,然后基于稀疏表示,通过流形对属于每个类别的训练样本进行建模。我们为每个类别学习稀疏表示的字典和投影矩阵,并根据投影的重建误差对测试图像进​​行分类。该框架提供了比基于模板匹配的纹理分类方法更紧凑的模型,并减轻了过度拟合的影响。实验结果表明,所提出的方法即使只有3张训练图像也能实现相当高的泛化能力,并且在三个基准数据集上明显优于最新的纹理分类方法。

著录项

  • 来源
    《Image and Vision Computing》 |2014年第11期|835-846|共12页
  • 作者单位

    Center for Intelligent Systems Research, Deakin University, Waurn Ponds, Victoria 3216, Australia,Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia;

    Center for Intelligent Systems Research, Deakin University, Waurn Ponds, Victoria 3216, Australia,Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia;

    Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia;

    Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Texture classification; Sparse representation; Manifold learning; Multi-manifold analysis; Few training image;

    机译:纹理分类;稀疏表示;流形学习;多歧管分析;很少训练图片;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号