首页> 外文期刊>Image and Vision Computing >Multi-view facial landmark detector learned by the Structured Output SVM
【24h】

Multi-view facial landmark detector learned by the Structured Output SVM

机译:通过结构化输出SVM学习的多视图面部界标检测器

获取原文
获取原文并翻译 | 示例

摘要

We propose a real-time multi-view landmark detector based on Deformable Part Models (DPM). The detector is composed of a mixture of tree based DPMs, each component describing landmark configurations in a specific range of viewing angles. The usage of view specific DPMs allows to capture a large range of poses and to deal with the problem of self-occlusions. Parameters of the detector are learned from annotated examples by the Structured Output Support Vector Machines algorithm. The learning objective is directly related to the performance measure used for detector evaluation. The tree based DPM allows to find a globally optimal landmark configuration by the dynamic programming. We propose a coarse-to-fine search strategy which allows real-time processing by the dynamic programming also on high resolution images. Empirical evaluation on "in the wild" images shows that the proposed detector is competitive with the state-of-the-art methods in terms of speed and accuracy yet it keeps the guarantee of finding a globally optimal estimate in contrast to other methods. (C) 2016 Elsevier B.V. All rights reserved.
机译:我们提出了一种基于可变形零件模型(DPM)的实时多视图地标检测器。检测器由基于树的DPM的混合物组成,每个组件描述特定视角范围内的地标配置。使用特定于视图的DPM可以捕获大范围的姿势并处理自遮挡问题。通过结构化输出支持向量机算法从带注释的示例中了解检测器的参数。学习目标与用于检测器评估的性能指标直接相关。基于树的DPM允许通过动态编程找到全局最佳的地标配置。我们提出了一种从粗到细的搜索策略,该策略允许通过动态编程对高分辨率图像进行实时处理。对“野外”图像的经验评估表明,所提出的检测器在速度和准确性方面与最新方法具有竞争优势,但与其他方法相比,它仍保证了找到全局最优估计的保证。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号