首页> 外文期刊>Image and Vision Computing >Extended three-dimensional rotation invariant local binary patterns
【24h】

Extended three-dimensional rotation invariant local binary patterns

机译:扩展的三维旋转不变局部二值模式

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new set of three-dimensional rotation invariant texture descriptors based on the well-known local binary patterns (LBPs). In the approach proposed here, we extend an existing three-dimensional LBP based on the region growing algorithm using existing features developed exquisitely for two-dimensional LBPs (pixel intensities and differences). We have conducted experiments on a synthetic dataset of three-dimensional randomly rotated texture images in order to evaluate the discriminatory power and the rotation invariant properties of our descriptors as well as those of other two-dimensional and three-dimensional texture descriptors. Our results demonstrate the effectiveness of the extended LBPs and improvements against other state-of-the-art hand-crafted three-dimensional texture descriptors on this dataset. Furthermore, we prove that the extended LBPs can be used in medical datasets to discriminate between MR images of oxygenated and non-oxygenated brain tissues of newborn babies. (C) 2017 Elsevier B.V. All rights reserved.
机译:本文提出了一套基于众所周知的局部二进制模式(LBP)的三维旋转不变纹理描述符。在这里提出的方法中,我们使用针对二维LBP(像素强度和差异)精心开发的现有特征,基于区域增长算法扩展了现有的三维LBP。我们已经对三维随机旋转纹理图像的合成数据集进行了实验,以评估我们的描述符以及其他二维和三维纹理描述符的辨别力和旋​​转不变性。我们的结果证明了扩展的LBP的有效性以及在此数据集上相对于其他最新的手工制作的三维纹理描述符的改进。此外,我们证明扩展的LBPs可用于医学数据集,以区分新生婴儿的含氧和无氧脑组织的MR图像。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号