首页> 外文期刊>Image Processing, IET >Human body and posture recognition system based on an improved thinning algorithm
【24h】

Human body and posture recognition system based on an improved thinning algorithm

机译:基于改进的稀疏算法的人体姿势识别系统

获取原文
获取原文并翻译 | 示例

摘要

This study presents a robust and reliable method of human posture recognition for visual surveillance systems. In order to recognise the human body, a recognition method is developed based on the skeleton of moving object. To obtain the skeleton of object, the authors describe some thinning algorithms for binary images, including one pass thinning algorithm, Zhang's thinning algorithm, Rosenfeld's thinning algorithm and a new thinning algorithm. Three performance measurements are chosen to evaluate these thinning algorithms. Comparing the performance results the authors found that the proposed thinning algorithm had managed to produce several improvements, including high thinness, connectivity, robustness to noise and low time consuming. Moreover, the skeleton obtained by the proposed thinning algorithm is one-pixel width and more smooth. Next, three different postures such as standing, bending and crawling will be estimated by using support vector machines as a classifier, which the histograms of horizontal and vertical projections are selected to define the feature. Finally, experimental results demonstrate that the human body and posture estimation algorithm have a robust and real-time performance, and is useful for the discrimination of human postures.
机译:这项研究提出了一种健壮可靠的视觉监视系统的人体姿势识别方法。为了识别人体,基于运动物体的骨架开发了一种识别方法。为了获得对象的骨架,作者描述了一些二进制图像的细化算法,包括一遍细化算法,Zhang的细化算法,Rosenfeld的细化算法和新的细化算法。选择三个性能度量来评估这些细化算法。通过比较性能结果,作者发现所提出的细化算法已成功实现了多项改进,包括高薄度,连接性,抗噪声能力和低耗时。此外,通过提出的细化算法获得的骨架是一个像素的宽度,并且更平滑。接下来,将通过使用支持向量机作为分类器来估计三个不同的姿势,例如站立,弯曲和爬行,选择水平和垂直投影的直方图以定义特征。最后,实验结果表明,人体和姿态估计算法具有鲁棒性和实时性,对于识别人体姿态很有用。

著录项

  • 来源
    《Image Processing, IET》 |2011年第5期|p.420-428|共9页
  • 作者

    Xie F.; Xu G.; Cheng Y.; Tian Y.;

  • 作者单位

    Coll. of Autom. Eng., Nanjing Univ. of Aeronaut. & Astronaut., Nanjing, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号