首页> 外文期刊>Image Processing, IET >Video object pursuit by tri-tracker with on-line learning from positive and negative candidates
【24h】

Video object pursuit by tri-tracker with on-line learning from positive and negative candidates

机译:三跟踪器跟踪视频对象,并从正负候选对象中进行在线学习

获取原文
获取原文并翻译 | 示例

摘要

Based on chain code, an improved Hough detection method for head detection is proposed, with which moving regions of objects are determined. During tracking process, we present a tri-tracking method (tri-tracker), on-line trained by positive and negative candidates, for tracking objects. The tracker trains three support vector machines (SVMs) initialised with a small number of labelled frames and updates the classifiers in a collaborative fashion, in which, an object is represented using a local binary pattern (LBP) histogram, RGB colour histogram and pixel-pattern-based texture feature (PPBTF) histogram, respectively. Based on the probability map created by each classifier, the final probability map forms by combing three individual probability maps. And then the peak of final probability map, which we consider as the object??s position, is found by mean shift. Experiments on several video sequences show the robustness and accuracy of our proposed method.
机译:基于链码,提出了一种改进的用于头部检测的霍夫检测方法,该方法可以确定物体的运动区域。在跟踪过程中,我们提出了一种三跟踪方法(tri-tracker),该方法由正负候选者在线训练,用于跟踪对象。跟踪器训练以少量标记帧初始化的三个支持向量机(SVM),并以协作方式更新分类器,其中,使用局部二进制模式(LBP)直方图,RGB颜色直方图和像素表示对象。基于图案的纹理特征(PPBTF)直方图。基于每个分类器创建的概率图,通过组合三个单独的概率图来形成最终概率图。然后通过均值漂移找到最终概率图的峰值,我们将其视为对象的位置。在几个视频序列上的实验表明了我们提出的方法的鲁棒性和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号