首页> 外文期刊>Image Processing, IET >Hidden conditional random field-based soccer video events detection
【24h】

Hidden conditional random field-based soccer video events detection

机译:隐藏式条件随机场足球视频事件检测

获取原文
获取原文并翻译 | 示例

摘要

Detect highlight event is an important step for semantic-based video retrieval. Hidden conditional random field (HCRF) is a discriminative model, which is effective in fusing observations for event inference. Mid-level semantics and their refinements are more robust than low-level visual features in event detection for learning models. To make full use of the contextual information, two aspects are taken into account during soccer video event detection. The first is parsing video sequences into event clips. The second is fusing the temporal transitions of the mid-level semantics of an event clip to determine the event type. In this study, HCRF is utilised to model the observations of mid-level semantics of an event clip for event detection. Comparisons are made with the dynamic Bayesian networks, hidden Markov model (HMM), enhanced HMM and conditional random field-based event detection approaches. Experimental results show the effectiveness of the proposed method.
机译:检测重点事件是基于语义的视频检索的重要步骤。隐藏式条件随机场(HCRF)是一种判别模型,可有效地将观察结果融合以进行事件推断。在学习模型的事件检测中,中级语义及其改进比低级视觉功能更强大。为了充分利用上下文信息,在足球视频事件检测期间要考虑两个方面。首先是将视频序列解析为事件剪辑。第二个是融合事件剪辑的中间层语义的时间转换以确定事件类型。在这项研究中,HCRF用于对事件剪辑的中间层语义的观察进​​行建模,以进行事件检测。与动态贝叶斯网络,隐马尔可夫模型(HMM),增强型HMM和基于条件随机场的事件检测方法进行了比较。实验结果表明了该方法的有效性。

著录项

  • 来源
    《Image Processing, IET》 |2012年第9期|p.1338-1347|共10页
  • 作者单位

    School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China;

    Faculty of Science and Technology, The University of Macau, People's Republic of China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号