首页> 外文期刊>Image Processing, IET >Colour texture classification from colour filter array images using various colour spaces
【24h】

Colour texture classification from colour filter array images using various colour spaces

机译:使用各种颜色空间从滤色器阵列图像中进行颜色纹理分类

获取原文
获取原文并翻译 | 示例

摘要

This study focuses on the classification of colour textures acquired by single-sensor colour cameras. In such cameras, the colour filter array (CFA) makes each photosensor sensitive to only one colour component, and CFA images must be demosaiced to estimate the final colour images. We show that demosaicing is detrimental to the textural information because it affects colour texture descriptors such as chromatic co-occurrence matrices (CCMs). However, it remains desirable to take advantage of the chromatic information for colour texture classification. This information is incompletely defined in CFA images, in which each pixel is associated to a single colour component. It is hence a challenge to extract standard colour texture descriptors from CFA images without demosaicing. We propose to form a pair of quarter-size colour images directly from CFA images without any estimation, then to compute the CCMs of these quarter-size images. This allows us to compare textures by means of their CCM-based similarity in texture classification or retrieval schemes, with still the ability to use different colour spaces. Experimental results achieved on benchmark colour texture databases show the effectiveness of the proposed approach for texture classification, and a complexity study highlights its computational efficiency.
机译:这项研究的重点是通过单传感器彩色相机获取的颜色纹理的分类。在这种相机中,滤色镜阵列(CFA)使每个光电传感器仅对一种颜色分量敏感,并且必须对CFA图像进行去马赛克以估计最终的彩色图像。我们显示去马赛克对纹理信息是有害的,因为它会影响颜色纹理描述符(例如色度共现矩阵(CCM))。然而,仍然需要利用色度信息来进行颜色纹理分类。此信息在CFA图像中定义不完整,其中每个像素都与单个颜色分量相关联。因此,在不去马赛克的情况下从CFA图像中提取标准颜色纹理描述符是一个挑战。我们建议直接从CFA图像中形成一对四分之一彩色图像,而不进行任何估计,然后计算这些四分之一彩色图像的CCM。这使我们能够在纹理分类或检索方案中通过基于CCM的相似性来比较纹理,同时仍具有使用不同颜色空间的能力。在基准颜色纹理数据库上获得的实验结果证明了所提出的纹理分类方法的有效性,而复杂性研究则突出了其计算效率。

著录项

  • 来源
    《Image Processing, IET》 |2012年第8期|p.1192-1204|共13页
  • 作者

    Losson O.; Macaire L.;

  • 作者单位

    Laboratoire LAGIS, UMR CNRS 8219 Universite?? Lille 1, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号