首页> 外文期刊>Image Processing, IET >Pixel-wise skin colour detection based on flexible neural tree
【24h】

Pixel-wise skin colour detection based on flexible neural tree

机译:基于柔性神经树的像素级肤色检测

获取原文
获取原文并翻译 | 示例

摘要

Skin colour detection plays an important role in image processing and computer vision. Selection of a suitable colour space is one key issue. The question that which colour space is most appropriate for pixel-wise skin colour detection is not yet concluded. In this study, a pixel-wise skin colour detection method is proposed based on the flexible neural tree (FNT) without considering the problem of selecting a suitable colour space. A FNT-based skin model is constructed by using large skin data sets which identifies the important components of colour spaces automatically. Experimental results show improved accuracy and false positive rates (FPRs). The structure and parameters of FNT are optimised via genetic programming and particle swarm optimisation algorithms, respectively. In the experiments, nine FNT skin models are constructed and evaluated on features extracted from RGB, YCbCr, HSV and CIE-Lab colour spaces. The Compaq and ECU datasets are used for constructing FNT-based skin model and evaluating its performance compared with other skin detection methods. Without extra processing steps, the authors method achieves state of the art performance in skin pixel classification and better performance in terms of accuracy and FPRs.
机译:肤色检测在图像处理和计算机视觉中起着重要作用。选择合适的色彩空间是一个关键问题。哪个颜色空间最适合像素级肤色检测的问题尚未得出结论。在这项研究中,提出了一种基于柔性神经树(FNT)的像素级皮肤颜色检测方法,而没有考虑选择合适的色彩空间的问题。通过使用大型皮肤数据集构建基于FNT的皮肤模型,该数据集会自动识别颜色空间的重要组成部分。实验结果显示出更高的准确性和误报率(FPR)。 FNT的结构和参数分别通过遗传编程和粒子群算法进行优化。在实验中,构建了九种FNT皮肤模型,并根据从RGB,YCbCr,HSV和CIE-Lab颜色空间提取的特征进行了评估。 Compaq和ECU数据集用于构建基于FNT的皮肤模型,并与其他皮肤检测方法相比评估其性能。无需额外的处理步骤,作者的方法就可以实现皮肤像素分类的最新性能,并在准确性和FPR方面具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号