首页> 外文期刊>Image Processing, IET >Single change detection-based moving object segmentation by using Daubechies complex wavelet transform
【24h】

Single change detection-based moving object segmentation by using Daubechies complex wavelet transform

机译:Daubechies复小波变换的基于单变化检测的运动目标分割

获取原文
获取原文并翻译 | 示例

摘要

Research in motion analysis is a challenging field and it has a variety of video surveillance applications. For any video surveillance application, background detection and removal plays an important role in segmentation of the moving objects. This study proposes a new method for segmentation of the moving object, which is based on single change detection applied on Daubechies complex wavelet coefficients of two consecutive frames. The authors have chosen Daubechies complex wavelet transform as it is shift invariant and has a better directional selectivity as compared with real-valued wavelet transforms. Single change detection is a method to obtain video object plane by inter-frame difference of two consecutive frames, and it provides automatic detection of appearances of new objects. The proposed method does not require any other parameter except wavelet coefficients. Segmentation results of the moving objects after applying the proposed method are compared with those obtained after applying other spatial and wavelet domain segmentation methods in terms of visual performance and a number of quantitative measures viz misclassification penalty, relative position-based measure, structural content, normalised absolute error and average difference and the proposed method is found better than the other methods.
机译:运动分析研究是一个充满挑战的领域,它具有各种视频监视应用程序。对于任何视频监控应用,背景检测和去除在移动对象的分割中都起着重要作用。这项研究提出了一种新的运动目标分割方法,该方法基于对两个连续帧的Daubechies复数小波系数进行单次变化检测的方法。作者选择了Daubechies复数小波变换,因为它具有位移不变性,并且与实值小波变换相比具有更好的方向选择性。单一变化检测是一种通过连续两个帧之间的帧间差异获取视频对象平面的方法,它可以自动检测新对象的出现。所提出的方法除了小波系数外不需要任何其他参数。将应用该方法后的运动对象的分割结果与使用其他空间和小波域分割方法后的结果进行比较,在视觉性能和一些量化指标上,即分类错误,基于位置的相对指标,结构含量,归一化绝对误差和平均差,发现该方法优于其他方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号