首页> 外文期刊>Image Processing, IET >Bionic RSTN invariant feature extraction method for image recognition and its application
【24h】

Bionic RSTN invariant feature extraction method for image recognition and its application

机译:用于图像识别的仿生RSTN不变特征提取方法及其应用

获取原文
获取原文并翻译 | 示例

摘要

It is significant to extract rotation, scaling, translation, and noise (RSTN) invariant features inspired by biological vision for image recognition. A bionic RSTN-invariant feature extraction are proposed. This extraction process comprises two stages. In the first stage, a novel orientation edge detection is designed based on a filter-to-filter scheme. Gabor filters, a bottom filter, smoothen an image by simulating biological vision. Bipolar filters, a top filter, detect the horizontal and vertical direction orientation edge by simulating vision cortex response. After obtaining the orientation edge of the image, an interval detector is executed by a spatial frequency of different direction and distance. Then, the interval detection results are transformed into pixels of the orientation-interval feature map. RSTN invariant features are generated through the repetition of orientation edge detection and interval detection. Several experimental results demonstrate that RSTN-invariant features have striking robustness, and capable to classify RSTN images. Finally, bionic invariant features are practiced in traffic sign recognition.
机译:提取受生物视觉启发的旋转,缩放,平移和噪声(RSTN)不变特征对于图像识别非常重要。提出了仿生RSTN不变特征提取。该提取过程包括两个阶段。在第一阶段,基于滤波器到滤波器方案设计了新颖的方向边缘检测。 Gabor滤镜(底部滤镜)可通过模拟生物视觉来平滑图像。双极滤镜(顶部滤镜)通过模拟视觉皮层响应来检测水平和垂直方向的定向边缘。在获得图像的取向边缘之后,通过不同方向和距离的空间频率来执行间隔检测器。然后,将间隔检测结果变换为取向间隔特征图的像素。 RSTN不变特征是通过重复定向边缘检测和间隔检测生成的。几个实验结果表明,RSTN不变特征具有惊人的鲁棒性,并且能够对RSTN图像进行分类。最后,在交通标志识别中实践了仿生不变特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号