首页> 外文期刊>Image Processing, IET >Hyperspectral face recognition via feature extraction and CRC-based classifier
【24h】

Hyperspectral face recognition via feature extraction and CRC-based classifier

机译:通过特征提取和基于CRC的分类器进行高光谱人脸识别

获取原文
获取原文并翻译 | 示例

摘要

Hyperspectral face recognition provides improved classification rates due to its abundant information in the face cubes of every subject in hyperspectral face databases. However, it is less popular in face recognition due to its difficulty in data acquisition, low signal-to-noise ratio, and high dimensionality. The authors compare five existing descriptors that are frequently used in 2D face recognition, and use collaborative representation classifier (CRC) with two voting techniques for hyperspectral face recognition. Experimental results demonstrate that, for PolyU-HSFD database, Gabor filter bank-based features are very robust to both Gaussian white noise and shot noise, and it achieves very competitive classification results. For CMU-HSFD database, when the noise level is low, histogram of oriented gradients (HOG) yields good classification results. In addition, when the noise level is high, raw facial images without feature extraction perform very well in term of correct classification rate. The local binary pattern and HOG descriptor are very sensitive to noise even though they achieve rather good classification rates if the facial images contain no noise. The best recognition result for the PolyU-HSFD is 96.4% ± 2.3 and for the CMU-HSFD is 98.0% ± 0.7.
机译:由于高光谱人脸识别在高光谱人脸数据库中每个对象的面部立方体中具有丰富的信息,因此可以提高分类率。但是,由于其数据采集困难,信噪比低和尺寸高,它在面部识别中不那么受欢迎。作者比较了5种在2D人脸识别中经常使用的描述符,并将协作表示分类器(CRC)与两种投票技术一起用于高光谱人脸识别。实验结果表明,对于PolyU-HSFD数据库,基于Gabor滤波器组的特征对于高斯白噪声和散粒噪声都非常健壮,并且获得了非常有竞争力的分类结果。对于CMU-HSFD数据库,当噪声水平较低时,定向梯度直方图(HOG)会产生良好的分类结果。另外,当噪声水平高时,就没有正确的分类率,没有特征提取的原始人脸图像表现也很好。即使面部图像不包含噪声,局部二进制模式和HOG描述符对噪声也非常敏感,即使它们实现了相当好的分类率。 PolyU-HSFD的最佳识别结果为96.4%±2.3,而CMU-HSFD的最佳识别结果为98.0%±0.7。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号