首页> 外文期刊>Image Processing, IET >New content-based image retrieval system based on optimised integration of DCD, wavelet and curvelet features
【24h】

New content-based image retrieval system based on optimised integration of DCD, wavelet and curvelet features

机译:基于DCD,小波和Curvelet特征优化集成的新型基于内容的图像检索系统

获取原文
获取原文并翻译 | 示例

摘要

A new content-based image retrieval (CBIR) scheme is proposed based on the optimised combination of the colour and texture features to enhance the image retrieval precision. This work focuses on a uniform partitioning scheme which is applied in the Hue, Saturation and Value (HSV) colour space to extract dominant colour descriptor (DCD) features. In the proposed CBIR scheme, the DCD features are initially extracted as the colour features, and then an appropriate similarity measure is applied. Also, several wavelet and curvelet features are defined as texture features to overcome the noise and the problem of image translation. Finally, the colour and texture features are optimally combined by using the particle swarm optimisation algorithm. The findings show that not only the proposed colour, wavelet and curvelet features outperform the existing ones but also their optimum combination has a better accuracy in comparison with several contemporary CBIR systems. The performance analysis shows that the proposed method improves the average precision metric from 67.85 to 71.05% for DCD, 58.90 to 65.43% for wavelet and 53.18 to 56.00% for curvelet using Corel dataset. In addition, the optimum combination presents the average precision of %76.50 which is significantly higher than the other state-of-the-art methods.
机译:基于色彩和纹理特征的优化组合,提出了一种新的基于内容的图像检索(CBIR)方案,以提高图像检索精度。这项工作的重点是在色相,饱和度和值(HSV)颜色空间中应用的统一分区方案,以提取主要颜色描述符(DCD)特征。在提出的CBIR方案中,首先将DCD特征提取为颜色特征,然后应用适当的相似性度量。而且,将几个小波和Curvelet特征定义为纹理特征,以克服噪声和图像平移问题。最后,通过使用粒子群优化算法将颜色和纹理特征进行最佳组合。研究结果表明,与几种现代CBIR系统相比,不仅拟议的颜色,小波和曲线小波特征优于现有特征,而且它们的最佳组合具有更好的精度。性能分析表明,使用Corel数据集,该方法将DCD的平均精度指标从67.85提高到71.05%,将小波的平均精度指标从58.90提高到65.43%,对Curvelet的平均精度指标提高了53.18至56.00%。此外,最佳组合的平均精度为%76.50,远高于其他最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号