首页> 外文期刊>Image Processing, IET >Image denoising based on sparse representation and gradient histogram
【24h】

Image denoising based on sparse representation and gradient histogram

机译:基于稀疏表示和梯度直方图的图像去噪

获取原文
获取原文并翻译 | 示例

摘要

Various image priors, such as sparsity prior, non-local self-similarity prior and gradient histogram prior, have been widely used for noise removal, while preserving the image texture. However, the gradient histogram prior used for texture enhancement sometimes generates false textures in the smooth areas. In order to address these problems, the authors propose a robust algorithm combining gradient histogram with sparse representation to obtain good estimates of the sparse coding coefficients of the latent image and realising image denoising while preserving the texture. The proposed model is solved by having a balance between over-enhancement and over-smoothing of the texture in order to preserve the natural texture appearance. Experimental results demonstrate the efficiency and effectiveness of the proposed method.
机译:各种图像先验,例如稀疏度先验,非局部自相似先验和梯度直方图先验已被广泛用于噪声去除,同时保留图像纹理。但是,先前用于纹理增强的梯度直方图有时会在平滑区域中生成错误的纹理。为了解决这些问题,作者提出了一种鲁棒的算法,将梯度直方图与稀疏表示相结合,以获得对潜像稀疏编码系数的良好估计,并在保持纹理的同时实现图像降噪。通过在纹理的过度增强和过度平滑之间保持平衡来解决所提出的模型,以保持自然的纹理外观。实验结果证明了该方法的有效性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号