首页> 外文期刊>Image Processing, IET >Fingerprint liveness detection based on guided filtering and hybrid image analysis
【24h】

Fingerprint liveness detection based on guided filtering and hybrid image analysis

机译:基于引导滤波和混合图像分析的指纹活力检测

获取原文
获取原文并翻译 | 示例

摘要

Fingerprints are widely used for biometric recognition. However, many spoofing attacks based on an artificially made fingerprint occur. In this study, the authors propose an approach to detect fingerprint liveness which uses the guided filtering and hybrid image analysis. This study deals with the problem of ignoring the contribution that is brought by the sharp features when analysing the denoised image. The method described utilises both the enhanced sharp features and denoised features from the hybrid images to get better results. The input fingerprint is pre-processed by region of interest extraction and then is filtered by a guidance image for obtaining the denoised image. Then, histogram equalisation is introduced to eliminate the impact of illumination condition. The authors extract the co-occurrence of adjacent local binary pattern features from both the cropped images and the denoised images. Whilst concatenating both the features together to form a long feature, t-Distributed Stochastic Neighbour Embedding is applied to reduce the data dimension. The authors consider the fingerprint liveness detection as a two-class classification problem and use support vector machine with radial basis function kernel to solve this problem. The authors evaluate the experiments on three benchmark data sets. Experimental results demonstrate that the accuracy of the proposed method can outperform most of the state-of-art methods.
机译:指纹广泛用于生物识别。然而,许多基于人工制作的指纹的欺骗攻击发生。在这项研究中,作者提出了一种检测使用引导滤波和混合图像分析的指纹活动的方法。本研究涉及忽略尖锐特征在分析去噪图像时所带来的贡献的问题。所描述的方法利用来自混合图像的增强的尖锐特征和去噪特征来获得更好的结果。通过感兴趣区域提取预处理输入指纹,然后通过引导图像​​过滤以获得去噪图像。然后,引入直方图均衡以消除照明条件的影响。作者提取来自裁剪图像和去噪图像的相邻局部二进制模式特征的共发生。同时将两个功能连接在一起形成长特征时,应用T分布式随机邻居嵌入以减少数据维度。作者将指纹活动检测视为两级分类问题,并使用带有径向基函数内核的支持向量机来解决这个问题。作者评估了三个基准数据集的实验。实验结果表明,所提出的方法的准确性能够优于大多数最先进的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号