首页> 外文期刊>Image Processing, IET >Background subtraction using infinite asymmetric Gaussian mixture models with simultaneous feature selection
【24h】

Background subtraction using infinite asymmetric Gaussian mixture models with simultaneous feature selection

机译:使用具有同时特征选择的无限不对称高斯混合模型减法

获取原文
获取原文并翻译 | 示例

摘要

Mixture models are broadly applied in image processing domains. Related existing challenges include failure to approximate exact data shapes, estimate correct number of components, and ignore irrelevant features. In this study, the authors develop a statistical self-refinement framework for the background subtraction task by using Dirichlet Process-based asymmetric Gaussian mixture model. The parameters of this model are learned using variational inference methods. They also incorporate feature selection simultaneously within the framework to avoid noisy influence from uninformative features. To validate the proposed framework, they report their results on background subtraction tasks on 8 different datasets for infrared and visible videos.
机译:混合模型广泛应用于图像处理结构域。相关的现有挑战包括未能近似精确的数据形状,估计正确数量的组件,并忽略无关的功能。在这项研究中,作者通过使用基于Dirichlet Process-Gaussian混合模型来开发用于背景减法任务的统计自我细化框架。使用变分推理方法学习该模型的参数。它们还在框架内同时结合了特征选择,以避免从无色特征的嘈杂的影响。要验证所提出的框架,他们会在8个不同数据集中向红外和可见视频报告它们的结果对后台减法任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号