首页> 外文期刊>Image Processing, IET >Pavement crack detection network based on pyramid structure and attention mechanism
【24h】

Pavement crack detection network based on pyramid structure and attention mechanism

机译:基于金字塔结构和注意机制的路面裂缝检测网络

获取原文
获取原文并翻译 | 示例

摘要

Automatic detection of pavement crack is an important task for conducting road maintenance. However, as an important part of the intelligent transportation system, automatic pavement crack detection is challenging due to the poor continuity of cracks, the different width of cracks, and the low contrast between cracks and the surrounding pavement. This study proposes a novel pavement crack detection method based on an end-to-end trainable deep convolution neural network. The authors build the network using the encoder-decoder architecture and adopt a pyramid module to exploit global context information for the complex topology structures of cracks. Moreover, they introduce a spatial-channel combinational attention module into the encoder-decoder network for refining crack features. Further, the dilated convolution is used to reduce the loss of crack details due to the pooling operation in the encoder network. In addition, they introduce a lovasz hinge loss function, which is suitable for small objects. They train the authors' network on the CRACK500 dataset and evaluate it on three pavement crack datasets. Among the methods they compare, their method can achieve the best experimental results.
机译:路面裂缝的自动检测是进行道路维护的重要任务。然而,由于智能交通系统的重要部分,自动路面裂纹检测由于裂缝连续性差,裂缝的不同宽度和裂缝和周围路面之间的低对比度而挑战。本研究提出了一种基于端到端可训练的深卷积神经网络的新型路面裂纹检测方法。作者使用编码器解码器架构构建网络,并采用金字塔模块来利用用于复杂拓扑结构的全局上下文信息。此外,它们将空间通道组合注意力介入编码器 - 解码器网络中以进行精炼裂纹特征。此外,扩张的卷积用于减少由于编码器网络中的汇集操作引起的裂纹细节的损失。此外,它们介绍了一种适用于小物体的Lovasz铰链损耗功能。他们在Cranc500数据集上培训作者网络,并在三个路面裂缝数据集上进行评估。在它们比较的方法中,它们的方法可以达到最佳实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号