首页> 外文期刊>Image Processing, IET >Kernel-based Bayesian clustering of computed tomography images for lung nodule segmentation
【24h】

Kernel-based Bayesian clustering of computed tomography images for lung nodule segmentation

机译:基于内核的贝叶斯群体肺结核分割计算断层扫描图像

获取原文
获取原文并翻译 | 示例

摘要

Lung nodule segmentation is an interesting research topic, and it serves as an effective solution for the diagnosis of Lung cancer. The existing methods of lung nodule segmentation suffer from accuracy issues due to the heterogeneity of the nodules in the lungs and the presence of visual deviations in the nodules. Thus, there is a requirement for an effective lung nodule segmentation, which assists the physicians in making accurate decisions. Accordingly, this study proposes a lung nodule segmentation process based on the kernel-based Bayesian fuzzy clustering (BFC), which is the integration of kernel functions in the BFC. Initially, the input computed tomography image is pre-processed for ensuring the effective segmentation, and the lobes are identified using the adaptive thresholding strategy. Then, the dominant areas in the lobes are identified using a scale-invariant feature transform descriptor, and the significant nodules are extracted using the grid-based segmentation. Finally, the lung nodules are segmented using the proposed kernel-based BFC. The proposed algorithm is evaluated using the Lung Image Database Consortium and Image Database Resource Initiative database, and it acquires the accuracy, sensitivity, and false positive rate of 0.955, 0.999, and 0.025, respectively.
机译:肺结核分割是一个有趣的研究主题,它是诊断肺癌的有效解决方案。现有的肺结节分割方法由于肺中结节的异质性以及结节中的视觉偏差存在而遭受准确性问题。因此,需要有效的肺结节分割,这使医生在做出准确的决策方面。因此,本研究提出了基于基于内核的贝叶斯模糊聚类(BFC)的肺结核分割过程,这是BFC中内核功能的集成。最初,预处理输入计算的断层摄影图像以确保有效分割,并且使用自适应阈值策略来识别裂片。然后,使用比例不变特征变换描述符识别裂片中的主导区域,并且使用基于网格的分割来提取显着的结节。最后,使用所提出的基于核的BFC分段肺结节。使用肺部图像数据库联盟和图像数据库资源计划数据库进行评估所提出的算法,并分别获取0.955,0.999和0.025的准确性,灵敏度和假阳性率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号