首页> 外文期刊>Image Processing, IET >Highly efficient neoteric histogram–entropy-based rapid and automatic thresholding method for moving vehicles and pedestrians detection
【24h】

Highly efficient neoteric histogram–entropy-based rapid and automatic thresholding method for moving vehicles and pedestrians detection

机译:基于高效的基于直方图的熵的快速自动阈值化方法,用于移动车辆和行人的检测

获取原文
获取原文并翻译 | 示例

摘要

Thresholding for segmentation is an important key step and necessary process in various applications. Estimating an accurate threshold value for a complex and coarse image is computationally expensive and lacks accuracy and stability. This study is aimed at developing a general histogram-entropy-based thresholding method, referred as our HEBT method, for fast and efficient automatic threshold value evaluation. In the proposed method, the probability density function and Shannon entropy derived from 1D bimodal histogram have been used to find the optimal threshold values automatically. The proposed method implemented with a three-frame differencing segmentation technique has been tested on real-time datasets - change detection 2012, change detection 2014, and Wallflower - to identify pedestrians and vehicles. The performance of our HEBT method has been compared with six state-of-the-art automatic thresholding methods. The experimental segmented image results confirmed that our HEBT method is more adaptable and better suited for real-time systems with severe challenging conditions of great variations. Further, the new HEBT method achieved the best segmentation results with highest values of several performance parameters, i.e. recall, precision, similarity, and f-measure. Interestingly, the computation time is the lowest for the proposed method than the state-of-the-art methods, promising its application for a fast and effective image segmentation.
机译:分割阈值是各种应用程序中重要的关键步骤和必要的过程。为复杂而粗糙的图像估计准确的阈值在计算上是昂贵的,并且缺乏准确性和稳定性。这项研究旨在开发一种通用的基于直方图熵的阈值化方法(称为我们的HEBT方法),以进行快速,高效的自动阈值评估。在提出的方法中,从一维双峰直方图导出的概率密度函数和香农熵已被用来自动找到最佳阈值。使用三帧差分分割技术实现的建议方法已在实时数据集-变更检测2012,变更检测2014和Wallflower-上进行了测试,以识别行人和车辆。我们的HEBT方法的性能已与六种最新的自动阈值方法进行了比较。实验分割的图像结果证实,我们的HEBT方法更适用于更复杂的严苛挑战性条件的实时系统。此外,新的HEBT方法以多个性能参数(即召回率,精度,相似性和f度量)的最大值实现了最佳分割结果。有趣的是,所提出的方法的计算时间比最先进的方法最少,从而有望将其用于快速有效的图像分割。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号