首页> 外文期刊>Image Processing, IET >Training approach using the shallow model and hard triplet mining for person re-identification
【24h】

Training approach using the shallow model and hard triplet mining for person re-identification

机译:使用浅层模型和硬三联体挖掘进行人员重新识别的训练方法

获取原文
获取原文并翻译 | 示例

摘要

Multi-target tracking in a non-overlapping camera network is an active research field, and one of the important problems in it is the person re-identification problem. In this study, the authors propose an approach to improve the performance of the backbone model in the person re-identification. Their approach focuses on training a fusion model with a shallow model and making hard triplets with relationship matrices quickly and efficiently. The proposed approach is simple, but it improves the performance of the backbone. In addition, the hard triplet mining in their process is much faster than the conventional approach. Experimental evaluation shows that the proposed approach can improve the performances of the backbone model. The proposed approach improves rank-1 and mean average precision (mAP) performance by more than 12.54 and 15.44%, respectively, over the backbone models in the Market1501 and DukeMTMC-reID dataset. The approach also achieves competitive performances compared with state-of-the-art approaches.
机译:非重叠摄像机网络中的多目标跟踪是一个活跃的研究领域,其中的重要问题之一是人的重新识别问题。在这项研究中,作者提出了一种在人员重新识别中改善骨干模型性能的方法。他们的方法侧重于训练具有浅层模型的融合模型,并快速而有效地制作具有关系矩阵的三元组。所提出的方法很简单,但是它可以提高骨干网的性能。此外,在他们的过程中进行硬的三重态开采比常规方法要快得多。实验评估表明,该方法可以提高骨干模型的性能。与Market1501和DukeMTMC-reID数据集中的骨干模型相比,该方法将等级1和平均平均精度(mAP)的性能分别提高了12.54和15.44%以上。与最先进的方法相比,该方法还具有竞争优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号