机译:使用浅层模型和硬三联体挖掘进行人员重新识别的训练方法
Gwangju Inst Sci & Technol Sch Elect Engn & Comp Sci 123 Cheomdangwagi Ro Gwangju 61005 South Korea;
Univ Regina Engn & Appl Sci Regina SK Canada;
data mining; sensor fusion; learning (artificial intelligence); matrix algebra; target tracking; image matching; neural nets; cameras; shallow model; hard triplet mining; multitarget tracking; nonoverlapping camera network; person re-identification problem; backbone model; fusion model; mAP performance; relationship matrices; rank-1 performance; DukeMTMC-reID dataset; Market1501 dataset;
机译:可见红外人重新识别的双级硬矿业三重态 - 中心损耗
机译:用于视频人员重新识别的实例硬三态丢失
机译:硬样本挖掘使人员重新识别更加有效和准确
机译:新型的硬采矿中心-重身份识别的三重损失
机译:人员重新识别和对侵犯人员重新识别网络的侵犯攻击和辩护
机译:使用时间相关惯性运动模式的深度建模对人员进行重新识别
机译:具有硬批次三重态丢失的分层聚类,用于人重新识别