首页> 外文期刊>Image Processing, IET >Hyperspectral image restoration by subspace representation with low-rank constraint and spatial-spectral total variation
【24h】

Hyperspectral image restoration by subspace representation with low-rank constraint and spatial-spectral total variation

机译:通过具有低秩约束和空间光谱总变化的子空间表示来恢复高光谱图像

获取原文
获取原文并翻译 | 示例

摘要

Hyperspectral images (HSIs) restoration is an important preprocessing step. The spectral vectors in HSI can be separated into different classification based on the land-covers, which means the spectral space can be regarded as the union of several low-rank subspaces. Subspace low-rank representation (SLRR) is powerful in exploring the inner low-rank structure and has been applied for HSI restoration. However, the traditional SLRR only seek for the rank-minimum representation under a given dictionary, which may treat the structured sparse noise as inherent low-rank components. In addition, the SLRR framework cannot make full use of the spatial information. In this study, a framework named subspace representation with low-rank constraint and spatial-spectral total variation is proposed for HSI restoration. In which, an artificial rank constraint is introduced to control the rank of the representation result, which can improve the removal of the structured sparse noise and exploit the intrinsic structure of spectral space more effectively. Meanwhile, the spatial-spectral total variation regularisation is applied to enhance the spatial and spectral smoothness. Several experiments conducted in simulated and real HSI datasets demonstrate that the proposed method can achieve a state-of-the-art performance both in visual quality and quantitative assessments.
机译:高光谱图像(HSI)还原是重要的预处理步骤。 HSI中的频谱矢量可以根据土地覆盖物分为不同的类别,这意味着频谱空间可以看作是几个低秩子空间的并集。子空间低秩表示(SLRR)在探索内部低秩结构方面功能强大,并已应用于HSI恢复。但是,传统的SLRR只在给定字典下寻求最小秩表示,这可能会将结构化的稀疏噪声视为固有的低秩分量。此外,SLRR框架无法充分利用空间信息。在这项研究中,提出了一种具有低秩约束和空间光谱总变化的名为子空间表示的框架,用于HSI恢复。其中引入了人工秩约束来控制表示结果的秩,从而可以改善结构化稀疏噪声的去除,并更有效地利用光谱空间的固有结构。同时,应用空间光谱总变化正则化来增强空间和光谱的平滑度。在模拟和真实HSI数据集中进行的一些实验表明,该方法可以在视觉质量和定量评估方面达到最先进的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号