首页> 外文期刊>Image Processing, IET >Multi-scale microstructure binary pattern extraction and learning for image representation
【24h】

Multi-scale microstructure binary pattern extraction and learning for image representation

机译:多尺度微结构二进制模式提取与图像表示学习

获取原文
获取原文并翻译 | 示例

摘要

In this study, an image representation method based on multi-scale microstructural binary pattern extraction is proposed, which uses zero-mean microstructural pattern binarisation. This method can express all kinds of important pattern structures that may appear in the image. By using the dominant binary pattern learning model, the dominant feature pattern sets adapted to different datasets can be obtained, which have good performance in the aspects of feature robustness, recognition, and representation ability. This method can greatly reduce the dimension of feature coding and improve the speed of the algorithm. The experimental results show that this method has strong recognition ability and robustness, is superior to the traditional local binary pattern and grey image micorstructure maximum response pattern methods, and has a competitive performance compared with the results of many latest algorithms.
机译:提出了一种基于零尺度微结构模式二值化的多尺度微结构二进制模式提取图像表示方法。该方法可以表达可能出现在图像中的各种重要图案结构。通过使用优势二元模式学习模型,可以获得适应于不同数据集的优势特征模式集,这些特征集在特征鲁棒性,识别性和表示能力方面具有良好的表现。该方法可以大大减少特征编码的维数,提高算法的速度。实验结果表明,该方法具有较强的识别能力和鲁棒性,优于传统的局部二值模式和灰度图像微结构最大响应模式方法,与许多最新算法的结果相比具有竞争优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号