首页> 外文期刊>Image Processing, IET >Diagnosis of melanoma from dermoscopic images using a deep depthwise separable residual convolutional network
【24h】

Diagnosis of melanoma from dermoscopic images using a deep depthwise separable residual convolutional network

机译:使用深度深度可分离残差卷积网络从皮肤镜图像诊断黑色素瘤

获取原文
获取原文并翻译 | 示例

摘要

Melanoma is one of the four major types of skin cancers caused by malignant growth in the melanocyte cells. It is the rarest one, accounting to only 1% of all skin cancer cases. However, it is the deadliest among all the skin cancer types. Owing to its rarity, efficient diagnosis of the disease becomes rather difficult. Here, a deep depthwise separable residual convolutional algorithm is introduced to perform binary melanoma classification on a dermoscopic skin lesion image dataset. Prior to training the model with the dataset noise removal from the images using non-local means filter is performed followed by enhancement using contrast-limited adaptive histogram equilisation over discrete wavelet transform algorithm. Images are fed to the model as multi-channel image matrices with channels chosen across multiple color spaces based on their ability to optimize the performance of the model. Proper lesion detection and classification ability of the model are tested by monitoring the gradient weighted class activation maps and saliency maps, respectively. Dynamic effectiveness of the model is shown through its performance in multiple skin lesion image datasets. The proposed model achieved an ACC of 99.50% on international skin imaging collaboration (ISIC), 96.77% on PH2, 94.44% on DermIS and 95.23% on MED-NODE datasets.
机译:黑色素瘤是由黑色素细胞恶性生长引起的四种主要类型的皮肤癌之一。它是最罕见的一种,仅占所有皮肤癌病例的1%。但是,它是所有皮肤癌类型中最致命的。由于其稀有性,对该疾病的有效诊断变得相当困难。在这里,介绍了一种深度深度可分离残差卷积算法,以对皮肤镜皮肤病变图像数据集执行二值黑素瘤分类。在训练具有数据集的模型之前,先使用非局部均值滤波器进行图像噪声去除,然后在离散小波变换算法上使用对比度受限的自适应直方图均衡进行增强。图像将作为多通道图像矩阵馈入模型,其中基于其优化模型性能的能力跨多个颜色空间选择通道。通过分别监视梯度加权类别激活图和显着图,测试模型的正确病变检测和分类能力。该模型的动态有效性通过其在多个皮肤病变图像数据集中的表现来显示。所提出的模型在国际皮肤成像合作组织(ISIC)上的ACC达到99.50%,在PH2上达到96.77%,在DermIS上达到94.44%,在MED-NODE数据集上达到95.23%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号