机译:使用深度深度可分离残差卷积网络从皮肤镜图像诊断黑色素瘤
Jalpaiguri Govt Engn Coll Dept Comp Sci & Engn Jalpaiguri W Bengal India;
cancer; diseases; skin; image enhancement; image colour analysis; medical image processing; image classification; discrete wavelet transforms; gradient methods; image filtering; cellular biophysics; image denoising; convolutional neural nets; deep depthwise separable residual convolutional network; skin cancers; melanocyte cells; deep depthwise separable residual convolutional algorithm; binary melanoma classification; dermoscopic skin lesion image dataset; multiple channel image matrix; multiple colour spaces; noise removal; nonlocal means filter; gradient weighted class activation maps; multiple skin lesion image datasets; MED-NODE datasets; efficient disease diagnosis; malignant cell growth; area under receiver operating characteristic score; contrast-limited adaptive histogram equilisation; discrete wavelet transform algorithm; lesion detection; lesion classification ability; saliency maps; melanoma diagnosis;
机译:IoT使能深度可分离的卷积神经网络,深载向量机用于Covid-19诊断和分类
机译:基于深度扩张可分离卷积的轻质和高效的深卷积神经网络
机译:TimeScaleNet:使用可学习的二阶IIR滤波器和深度可分离的一维Atrous卷积的余数网络的原始音频识别的多分辨率方法
机译:使用皮肤镜图像基于深度学习的黑色素瘤诊断
机译:深空和时间可分离卷积神经网络的一体化算法/架构共设计
机译:基于密集连接深度可分离卷积深网络的关节光盘和杯分割
机译:利用卷积神经网络自动诊断大黑素瘤的黑色素瘤