首页> 外文期刊>Image Processing, IET >Global median filtering forensic method based on Pearson parameter statistics
【24h】

Global median filtering forensic method based on Pearson parameter statistics

机译:基于皮尔逊参数统计的全局中值滤波取证方法

获取原文
获取原文并翻译 | 示例

摘要

Median filtering forensics in images is a subject under intense study nowadays. Existing median filtering detectors are developed based on hand-crafted features and convolutional neural networks (CNN). Among hand-crafted features based detectors, most of the detector's performance deteriorate for low-resolution images compressed with low-quality factors. However, CNN-based detectors are found to be more robust at the expense of large database and large training time requirement. In this study, the authors propose a robust median filtering detector by exploiting the statistics of the Pearson parameter ${i kappa }$kappa, ${i kappa }$kappa is defined as the polynomial ratio of skewness and kurtosis. To capture fingerprints of median filtering, ${i kappa }$kappa is determined for the median filtered residual (MFR) of the images to construct a novel feature set of 23 dimensions. The efficacy of the proposed feature set, against existing hand-crafted features based and CNN-based detectors, is established by a series of experiments for global median filtering detection. Results reveal that the proposed feature set exhibits performance gain of 2-4% against existing hand-crafted features based detectors and an approximate gain of 4% against CNN-based detector for detection of low-resolution median filtered images compressed with low-quality factors.
机译:如今,图像中的中性取证取证是一个正在深入研究的课题。现有的中值滤波检测器是基于手工特征和卷积神经网络(CNN)开发的。在基于手工制作的特征的检测器中,大多数检测器的性能会因使用低质量因数压缩的低分辨率图像而降低。但是,发现基于CNN的检测器更加健壮,但要以庞大的数据库和大量的培训时间为代价。在这项研究中,作者通过利用Pearson参数$ { bi kappa} $ kappa的统计量提出了一种鲁棒的中值滤波检测器,其中$ { bi kappa} $ kappa被定义为偏度和峰度的多项式比率。为了捕获中值滤波的指纹,为图像的中值滤波残差(MFR)确定$ { bi kappa} $ kappa,以构建一个23维的新颖特征集。通过针对全局中值滤波检测的一系列实验,针对现有的基于手工特征和基于CNN的检测器,提出的特征集的功效得以确立。结果表明,与现有的基于手工特征的检测器相比,拟议的特征集具有2-4%的性能提升,与基于CNN的检测器相比,用于检测用低质量因数压缩的低分辨率中值滤波图像的性能提升约为4% 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号