首页> 外文期刊>Image Processing, IET >Semantic segmentation of remote sensing ship image via a convolutional neural networks model
【24h】

Semantic segmentation of remote sensing ship image via a convolutional neural networks model

机译:基于卷积神经网络模型的遥感船图像语义分割

获取原文
获取原文并翻译 | 示例

摘要

Semantic segmentation of remote sensing ship targets is one of the most challenging works in image processing, especially for small and multi-scale ship target detection. To solve these problems, an efficient method based on convolutional neural networks (CNN) to detect ship targets is proposed. This method introduces the attention model to the network to enhance the characteristics of small targets and combines atrous convolution with traditional CNN to increase the receptive field. To preserve the information lost by pooling, the proposed method uses the passthrough layer method to retain more features and concatenate the high- and low-resolution features. To verify the effectiveness of the method proposed in this study, the performance was evaluated by using precision, recall, F1-Score, mean intersection-over-union (IoU), and pixel accuracy measurements. These performances are all higher than the traditional semantic segmentation network SegNet. Mean IoU increases to 0.783 and pixel accuracy increases to 0.935. This method can conclusively identify ship targets in remote sensing images and has a certain reference value for remote sensing target detection.
机译:遥感船目标的语义分割是图像处理中最具挑战性的工作之一,特别是对于小型和多尺度的船目标检测。为了解决这些问题,提出了一种基于卷积神经网络(CNN)的舰船目标检测方法。该方法将注意力模型引入网络,以增强小目标的特征,并将无声卷积与传统的CNN结合起来以增加接收场。为了保留因合并而丢失的信息,所提出的方法使用直通层方法保留更多特征并连接高分辨率和低分辨率特征。为了验证本研究中提出的方法的有效性,通过使用精度,召回率,F1-Score,均值相交(IoU)和像素精度测量来评估性能。这些性能都高于传统的语义分割网络SegNet。平均IoU增加到0.783,像素精度增加到0.935。该方法可以最终确定遥感图像中的舰船目标,对遥感目标的检测具有一定的参考价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号