首页> 外文期刊>Image Processing, IET >Computer aided diagnosis of glaucoma using discrete and empirical wavelet transform from fundus images
【24h】

Computer aided diagnosis of glaucoma using discrete and empirical wavelet transform from fundus images

机译:利用眼底图像的离散和经验小波变换对青光眼进行计算机辅助诊断

获取原文
获取原文并翻译 | 示例

摘要

Glaucoma is a class of eye disorder; it causes progressive deterioration of optic nerve fibres. Discrete wavelet transforms (DWTs) and empirical wavelet transforms (EWTs) are widely used methods in the literature for feature extraction using image decomposition. However, to increase the accuracy for measuring features of images a hybrid and concatenation approach has been presented in the proposed research work. DWT decomposes images into approximate and detail coefficients and EWT decomposes images into its sub band images. The concatenation approach employs the combination of all features obtained using DWT and EWT and their combination. Extracted features from each of DWT, EWT, DWTEWT and EWTDWT are concatenated. Concatenated features are normalised, ranked and fed to singular value decomposition to find robust features. Fourteen robust features are used by support vector machine classifier. The obtained accuracy, sensitivity and specificity are 83.57, 86.40 and 80.80%, respectively, for tenfold cross validation which outperforms the existing methods of glaucoma detection.
机译:青光眼是一类眼疾;它会导致视神经纤维的逐渐退化。离散小波变换(DWT)和经验小波变换(EWT)是文献中使用图像分解进行特征提取的广泛方法。然而,为了提高测量图像特征的准确性,在提出的研究工作中提出了一种混合和级联方法。 DWT将图像分解为近似系数和细节系数,而EWT将图像分解为其子带图像。串联方法采用通过DWT和EWT获得的所有特征的组合及其组合。从DWT,EWT,DWTEWT和EWTDWT中提取的特征是串联在一起的。对级联特征进行归一化,排序并馈入奇异值分解,以找到可靠的特征。支持向量机分类器使用了十四种鲁棒功能。十次交叉验证所获得的准确性,敏感性和特异性分别为83.57%,86.40%和80.80%,优于现有的青光眼检测方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号