首页> 外文期刊>Image Processing, IET >Selecting optimal bands for sub-pixel target detection in hyperspectral images based on implanting synthetic targets
【24h】

Selecting optimal bands for sub-pixel target detection in hyperspectral images based on implanting synthetic targets

机译:基于植入合成目标,为高光谱图像中的亚像素目标检测选择最佳波段

获取原文
获取原文并翻译 | 示例

摘要

Target detection at sub-pixel abundances is, in fact, one of the challenging issues of hyperspectral image processing. Selection of optimal bands to improve sub-pixel target detection (STD) performance is one of the common solutions, applied by many researchers. Nevertheless, the absence of sufficient training data is the main weakness of selecting optimal bands with regard to this approach. The present research introduces a new band selection method for STD in hyperspectral images, based on creating training data, in which the desired target spectrum is implanted randomly in a series of host pixels from the entire hyperspectral image. Afterwards, via running an optimisation algorithm twice, with the aim of minimising the false alarm rate (FAR) in local adaptive coherence estimator target detection algorithm, the number of optimal bands and optimal spectral bands are selected. In this study, the performance of three optimisation methods including the genetic algorithm (GA), Grey Wolf optimisation (GWO), and particle swarm optimisation (PSO) are compared. Experimental results on HyMap and Hyperion datasets show that the proposed method obtains the minimum FAR compared with the rest of the evaluated methods. Also, based on the results obtained, GWO outperforms GA and PSO optimisation methods in the STD domain.
机译:实际上,亚像素丰度下的目标检测是高光谱图像处理中具有挑战性的问题之一。选择最佳频段以提高亚像素目标检测(STD)性能是许多研究人员采用的常见解决方案之一。然而,缺乏足够的训练数据是针对该方法选择最佳频带的主要缺点。本研究基于创建训练数据,引入了一种用于高光谱图像中STD的新波段选择方法,其中将所需目标光谱随机植入整个高光谱图像中的一系列宿主像素中。然后,通过运行两次优化算法,以最小化局部自适应相干估计器目标检测算法中的误报率(FAR),选择最佳频带的数量和最佳频谱频带。在这项研究中,比较了三种优化方法的性能,包括遗传算法(GA),灰狼优化(GWO)和粒子群优化(PSO)。在HyMap和Hyperion数据集上的实验结果表明,与其余评估方法相比,该方法可获得最小FAR。此外,根据获得的结果,GWO在STD域中的性能优于GA和PSO优化方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号