首页> 外文期刊>IEICE Transactions on Information and Systems >Robust 3D Reconstruction with Outliers Using RANSAC Based Singular Value Decomposition
【24h】

Robust 3D Reconstruction with Outliers Using RANSAC Based Singular Value Decomposition

机译:使用基于RANSAC的奇异值分解的离群值的鲁棒3D重构

获取原文
获取原文并翻译 | 示例

摘要

It is well known that both shape and motion can be factorized directly from the measurement matrix constructed from feature points trajectories under orthographic camera model. In practical applications, the measurement matrix might be contaminated by noises and contains outliers. A direct SVD (Singular Value Decomposition) to the measurement matrix with outliers would yield erroneous result. This paper presents a novel algorithm for computing SVD with outliers. We decompose the SVD computation as a set of alternate linear regression subproblems. The linear regression subproblems are solved robustly by applying the RANSAC strategy. The proposed robust factorization method with outliers can improve the reconstruction result remarkably. Quantitative and qualitative experiments illustrate the good performance of the proposed method.
机译:众所周知,形状和运动都可以直接从正交摄影机模型下由特征点轨迹构成的测量矩阵中分解出来。在实际应用中,测量矩阵可能会被噪声污染并包含异常值。将具有异常值的直接SVD(奇异值分解)到测量矩阵会产生错误的结果。本文提出了一种具有离群值的SVD计算新算法。我们将SVD计算分解为一组替代的线性回归子问题。线性回归子问题可以通过应用RANSAC策略来稳健地解决。提出的具有离群值的鲁棒分解方法可以显着提高重建结果。定量和定性实验说明了该方法的良好性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号