首页> 外文期刊>IEICE Transactions on Information and Systems >Voice Activity Detection Based On High Order Statistics And Online Em Algorithm
【24h】

Voice Activity Detection Based On High Order Statistics And Online Em Algorithm

机译:基于高阶统计和在线Em算法的语音活动检测

获取原文
获取原文并翻译 | 示例

摘要

A new online, unsupervised voice activity detection (VAD) method is proposed. The method is based on a feature derived from high-order statistics (HOS), enhanced by a second metric based on normalized autocorrelation peaks to improve its robustness to non-Gaussian noises. This feature is also oriented for discriminating between close-talk and far-field speech, thus providing a VAD method in the context of human-to-human interaction independent of the energy level. The classification is done by an online variation of the Expectation-Maximization (EM) algorithm, to track and adapt to noise variations in the speech signal. Performance of the proposed method is evaluated on an in-house data and on CENSREC-1-C, a publicly available database used for VAD in the context of automatic speech recognition (ASR). On both test sets, the proposed method outperforms a simple energy-based algorithm and is shown to be more robust against the change in speech sparsity, SNR variability and the noise type.
机译:提出了一种新的在线无监督语音活动检测(VAD)方法。该方法基于从高阶统计量(HOS)导出的特征,并通过基于归一化自相关峰的第二个度量对其进行了增强,以提高其对非高斯噪声的鲁棒性。此功能还旨在区分近距离通话和远距离语音,从而在人与人交互的上下文中提供独立于能量级别的VAD方法。通过在线最大化期望(EM)算法来完成分类,以跟踪并适应语音信号中的噪声变化。在内部数据和CENSREC-1-C上评估了所提出方法的性能,CENSREC-1-C是在自动语音识别(ASR)上下文中用于VAD的公共可用数据库。在两个测试集上,所提出的方法均优于基于能量的简单算法,并且在抵抗语音稀疏性,SNR可变性和噪声类型的变化方面表现出更强的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号