首页> 外文期刊>IEICE Transactions on Information and Systems >Utterance Verification Using Word Voiceprint Models Based On Probabilistic Distributions Of Phone-level Log-likelihood Ratio And Phone Duration
【24h】

Utterance Verification Using Word Voiceprint Models Based On Probabilistic Distributions Of Phone-level Log-likelihood Ratio And Phone Duration

机译:基于电话级别对数似然比和电话持续时间概率分布的Word声纹模型话语验证

获取原文
获取原文并翻译 | 示例

摘要

This paper suggests word voiceprint models to verify the recognition results obtained from a speech recognition system. Word voiceprint models have word-dependent information based on the distributions of phone-level log-likelihood ratio and duration. Thus, we can obtain a more reliable confidence score for a recognized word by using its word voiceprint models that represent the more proper characteristics of utterance verification for the word. Additionally, when obtaining a log-likelihood ratio-based word voiceprint score, this paper proposes a new log-scale normalization function using the distribution of the phone-level log-likelihood ratio, instead of the sigmoid function widely used in obtaining a phone-level log-likelihood ratio. This function plays a role of emphasizing a mis-recognized phone in a word. This individual information of a word is used to help achieve a more discriminative score against out-of-vocabulary words. The proposed method requires additional memory, but it shows that the relative reduction in equal error rate is 16.9% compared to the baseline system using simple phone log-likelihood ratios.
机译:本文提出了单词声纹模型,以验证从语音识别系统获得的识别结果。单词声纹模型具有基于电话级别对数似然比和持续时间分布的单词相关信息。因此,我们可以通过使用代表该单词发声验证的更适当特征的单词声纹模型来获得一个已识别单词的更可靠的置信度得分。此外,在获取基于对数似然比的单词声纹得分时,本文提出了一种利用电话级对数似然比的分布的新对数尺度归一化函数,而不是广泛用于获取电话信息的S形函数。水平对数似然比。此功能起着强调单词中误认电话的作用。单词的这些个人信息用于帮助针对词汇外单词获得更高的判别分数。所提出的方法需要额外的内存,但与使用简单电话对数似然比的基线系统相比,它的均等错误率相对降低了16.9%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号