首页> 外文期刊>IEICE Transactions on Information and Systems >HMM-Based Mask Estimation for a Speech Recognition Front-End Using Computational Auditory Scene Analysis
【24h】

HMM-Based Mask Estimation for a Speech Recognition Front-End Using Computational Auditory Scene Analysis

机译:基于HMM的语音听觉前端的语音识别前端蒙版估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a new mask estimation method for the computational auditory scene analysis (CASA) of speech using two microphones. The proposed method is based on a hidden Markov model (HMM) in order to incorporate an observation that the mask information should be correlated over contiguous analysis frames. In other words, HMM is used to estimate the mask information represented as the inter-aural time difference (ITD) and the interaural level difference (ILD) of two channel signals, and the estimated mask information is finally employed in the separation of desired speech from noisy speech. To show the effectiveness of the proposed mask estimation, we then compare the performance of the proposed method with that of a Gaussian kernel-based estimation method in terms of the performance of speech recognition. As a result, the proposed HMM-based mask estimation method provided an average word error rate reduction of 61.4% when compared with the Gaussian kernel-based mask estimation method.
机译:在本文中,我们为使用两个麦克风的语音计算听觉场景分析(CASA)提出了一种新的掩码估计方法。所提出的方法基于隐马尔可夫模型(HMM),以便合并观察值,即掩码信息应在连续的分析帧上进行关联。换句话说,HMM用于估计表示为两个声道信号的耳间时间差(ITD)和耳间电平差(ILD)的掩码信息,并且最终将所估计的掩码信息用于所需语音的分离中从嘈杂的演讲中。为了显示所提出的掩膜估计的有效性,然后在语音识别的性能方面,我们将所提出的方法的性能与基于高斯核的估计方法的性能进行了比较。结果,与基于高斯核的掩模估计方法相比,所提出的基于HMM的掩模估计方法提供了61.4%的平均字错误率降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号