首页> 外文期刊>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences >Underdetermined Blind Separation of Convolutive Mixtures of Speech Using Time-Frequency Mask and Mixing Matrix Estimation
【24h】

Underdetermined Blind Separation of Convolutive Mixtures of Speech Using Time-Frequency Mask and Mixing Matrix Estimation

机译:使用时频掩码和混合矩阵估计的语音卷积混合的欠定盲分离

获取原文
获取原文并翻译 | 示例

摘要

This paper focuses on the Underdetermined blind source separation (BSS) of three speech signals mixed in a real environment from measurements provided by two sensors. To date, solutions to the Underdetermined BSS problem have mainly been based on the assumption that the speech signals are sufficiently sparse. They involve designing binary masks that extract signals at time-frequency points where only one signal was assumed to exist. The major issue encountered in previous work relates to the occurrence of distortion, which affects a separated signal with loud musical noise. To overcome this problem, we propose combining sparseness with the use of an estimated mixing matrix. First, we use a geometrical approach to detect when only one source is active and to perform a preliminary separation with a time-frequency mask. This information is then used to estimate the mixing matrix, which allows us to improve our separation. Experimental results show that this combination of time-frequency mask and mixing matrix estimation provides separated signals of better quality (less distortion, less musical noise) than those extracted without using the estimated mixing matrix in reverberant conditions where the reverberant time (TR) was 130ms and 200ms. Furthermore, informal listening tests clearly show that musical noise is deeply lowered by the proposed method comparatively to the classical approaches.
机译:本文着重于根据两个传感器提供的测量结果,在真实环境中混合的三种语音信号的不确定盲源分离(BSS)。迄今为止,欠确定的BSS问题的解决方案主要基于语音信号足够稀疏的假设。它们涉及设计二进制掩码,该二进制掩码在假定仅存在一个信号的时频点处提取信号。以前的工作中遇到的主要问题涉及失真的发生,失真会影响分离的信号并产生较大的音乐噪音。为了克服这个问题,我们建议将稀疏性与估计的混合矩阵结合使用。首先,我们使用一种几何方法来检测何时只有一个源处于活动状态,并使用时频模板进行初步分离。然后,此信息用于估计混合矩阵,这使我们可以改善分离效果。实验结果表明,在混响时间(TR)为130ms的混响条件下,时频掩模和混合矩阵估计的这种组合提供了比不使用估计的混合矩阵提取的信号更好的质量(失真较小,音乐噪音较小)的分离信号和200毫秒。此外,非正式的听力测试清楚地表明,与经典方法相比,该方法大大降低了音乐噪音。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号