首页> 外文期刊>IEICE Transactions on Electronics >Resonance Analysis of Multilayered Filters with Triadic Cantor-Type One-Dimensional Quasi-Fractal Structures
【24h】

Resonance Analysis of Multilayered Filters with Triadic Cantor-Type One-Dimensional Quasi-Fractal Structures

机译:三重Cantor型一维拟分形结构的多层滤波器的共振分析

获取原文
获取原文并翻译 | 示例

摘要

Multilayered filters with a dielectric distribution along their thickness forming a one-dimensional quasi-fractal structure are theoretically analyzed, focusing on exposing their resonant properties in order to understand a dielectric Menger's sponge resonator. "Quasi-fractal" refers to the triadic Cantor set with finite generation. First, a novel calculation method that has the ability to deal with filters with fine fractal structures is derived. This method takes advantage of Clifford algebra based on the theory of thin-film optics. The method is then applied to classify resonant modes and, especially, to investigate quality factors for them in terms of the following design parameters: a dielectric constant, a loss tangent, and a stage number. The latter determines fractal structure. Finally, behavior of the filters with perfect fractal structure is considered. A crucial finding is that the high quality factor of the modes is not due to the complete self-similarity, but rather to the breaking of such a fractal symmetry.
机译:理论上分析了具有沿其厚度形成一维准分形结构的介电分布的多层滤波器,重点在于暴露其谐振特性,以了解介电Menger的海绵谐振器。 “准分形”是指具有有限生成的三重Cantor集。首先,推导了一种新颖的计算方法,该方法具有处理具有精细分形结构的滤波器的能力。该方法利用了基于薄膜光学理论的Clifford代数。然后将该方法应用于对共振模式进行分类,尤其是根据以下设计参数来研究共振模式的品质因数:介电常数,损耗角正切和级数。后者决定了分形结构。最后,考虑具有完美分形结构的滤波器的行为。一个关键的发现是模式的高品质因数不是由于完全自相似,而是由于这种分形对称性的破坏。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号