首页> 外文期刊>IEEE transactions on visualization and computer graphics >Efficient triangular surface approximations using wavelets and quadtree data structures
【24h】

Efficient triangular surface approximations using wavelets and quadtree data structures

机译:使用小波和四叉树数据结构的有效三角表面近似

获取原文
获取原文并翻译 | 示例

摘要

We present a method for adaptive surface meshing and triangulation which controls the local level of detail of the surface approximation by local spectral estimates. These estimates are determined by a wavelet representation of the surface data. The basic idea is to decompose the initial data set by means of an orthogonal or semi orthogonal tensor product wavelet transform (WT) and to analyze the resulting coefficients. In surface regions, where the partial energy of the resulting coefficients is low, the polygonal approximation of the surface can be performed with larger triangles without losing too much fine grain details. However, since the localization of the WT is bound by the Heisenberg principle, the meshing method has to be controlled by the detail signals rather than directly by the coefficients. The dyadic scaling of the WT stimulated us to build an hierarchical meshing algorithm which transforms the initially regular data grid into a quadtree representation by rejection of unimportant mesh vertices. The optimum triangulation of the resulting quadtree cells is carried out by selection from a look up table. The tree grows recursively as controlled by detail signals which are computed from a modified inverse WT. In order to control the local level of detail, we introduce a new class of wavelet space filters acting as "magnifying glasses" on the data. We show that our algorithm performs a low algorithmic complexity, so that surface meshing can be achieved at interactive rates, such as required by flight simulators, however, other applications are possible as well.
机译:我们提出了一种自适应曲面网格划分和三角剖分的方法,该方法通过局部频谱估计来控制局部表面近似值。这些估计由表面数据的小波表示确定。基本思想是借助正交或半正交张量积小波变换(WT)分解初始数据集,并分析所得系数。在所得系数的部分能量较低的表面区域中,可以使用较大的三角形执行表面的多边形近似,而不会丢失太多的细晶粒细节。但是,由于WT的定位受海森堡原理的约束,因此网格划分方法必须由细节信号控制,而不是直接由系数控制。 WT的二进位缩放刺激我们建立分层的网格划分算法,该算法通过拒绝不重要的网格顶点将最初的规则数据网格转换为四叉树表示。通过从查找表中进行选择,可以对生成的四叉树单元进行最佳三角剖分。该树在受详细信号控制的情况下递归生长,该详细信号是从修改后的逆WT计算得出的。为了控制局部细节水平,我们引入了一类新的小波空间滤波器,充当数据上的“放大镜”。我们证明了我们的算法执行算法的复杂度较低,因此可以以交互速率实现曲面网格划分,例如飞行模拟器所要求的,但是其他应用程序也是可能的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号