首页> 外文期刊>IEEE transactions on visualization and computer graphics >Visualizing nonlinear vector field topology
【24h】

Visualizing nonlinear vector field topology

机译:可视化非线性矢量场拓扑

获取原文
获取原文并翻译 | 示例

摘要

We present our results on the visualization of nonlinear vectornfield topology. The underlying mathematics is done in Clifford algebra,na system describing geometry by extending the usual vector space by anmultiplication of vectors. We started with the observation that allnknown algorithms for vector field topology are based on piecewise linearnor bilinear approximation, and that these methods destroy the localntopology if nonlinear behavior is present. Our algorithm looks for suchnsituations, chooses an appropriate polynomial approximation in thesenareas, and, finally, visualizes the topology. This overcomes thenproblem, and the algorithm is still very fast because we are usingnlinear approximation outside these small but important areas. The paperncontains a detailed description of the algorithm and a basicnintroduction to Clifford algebra
机译:我们在非线性向量域拓扑的可视化上展示我们的结果。基础数学是在Clifford代数系统中完成的,该系统通过向量的乘积扩展通常的向量空间来描述几何。我们从观察开始,所有已知的矢量场拓扑算法都基于分段线性或双线性逼近,并且如果存在非线性行为,则这些方法会破坏局部拓扑。我们的算法寻找这样的情况,在这些区域中选择合适的多项式逼近,最后可视化拓扑。这克服了当时的问题,并且算法仍然非常快,因为我们在这些小而重要的区域之外使用了非线性逼近。本文包含该算法的详细说明和Clifford代数的基本介绍

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号