首页> 外文期刊>IEEE transactions on visualization and computer graphics >Human Motion Capture Data Compression by Model-Based Indexing: A Power Aware Approach
【24h】

Human Motion Capture Data Compression by Model-Based Indexing: A Power Aware Approach

机译:通过基于模型的索引进行人体运动捕获数据压缩:一种功率感知方法

获取原文
获取原文并翻译 | 示例

摘要

Human motion capture (MoCap) data can be used for animation of virtual human-like characters in distributed virtual reality applications and networked games. MoCap data compressed using the standard MPEG-4 encoding pipeline comprising of predictive encoding (and/or DCT decorrelation), quantization, and arithmetic/Huffman encoding, entails significant power consumption for the purpose of decompression. In this paper, we propose a novel algorithm for compression of MoCap data, which is based on smart indexing of the MoCap data by exploiting structural information derived from the skeletal virtual human model. The indexing algorithm can be fine-controlled using three predefined quality control parameters (QCPs). We demonstrate how an efficient combination of the three QCPs results in a lower network bandwidth requirement and reduced power consumption for data decompression at the client end when compared to standard MPEG-4 compression. Since the proposed algorithm exploits structural information derived from the skeletal virtual human model, it is observed to result in virtual human animation of visually acceptable quality upon decompression
机译:人体动作捕捉(MoCap)数据可用于在分布式虚拟现实应用程序和网络游戏中对类似于虚拟人物的角色进行动画制作。使用包括预测编码(和/或DCT去相关),量化和算术/霍夫曼编码在内的标准MPEG-4编码管道压缩的MoCap数据需要大量的功耗,以进行解压缩。在本文中,我们提出了一种新颖的MoCap数据压缩算法,该算法基于MoCap数据的智能索引,它利用了从骨骼虚拟人模型衍生的结构信息。可以使用三个预定义的质量控制参数(QCP)对索引算法进行精细控制。与标准的MPEG-4压缩相比,我们演示了三个QCP的有效组合如何导致较低的网络带宽需求和减少的客户端数据解压缩功耗。由于所提出的算法利用了从骨骼虚拟人体模型得出的结构信息,因此可以观察到在减压时会产生视觉上可接受的质量的虚拟人体动画

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号