首页> 外文期刊>IEEE transactions on visualization and computer graphics >A Statistical Approach to Volume Data Quality Assessment
【24h】

A Statistical Approach to Volume Data Quality Assessment

机译:体积数据质量评估的统计方法

获取原文
获取原文并翻译 | 示例

摘要

Quality assessment plays a crucial role in data analysis. In this paper, we present a reduced-reference approach to volume data quality assessment. Our algorithm extracts important statistical information from the original data in the wavelet domain. Using the extracted information as feature and predefined distance functions, we are able to identify and quantify the quality loss in the reduced or distorted version of data, eliminating the need to access the original data. Our feature representation is naturally organized in the form of multiple scales, which facilitates quality evaluation of data with different resolutions. The feature can be effectively compressed in size. We have experimented with our algorithm on scientific and medical data sets of various sizes and characteristics. Our results show that the size of the feature does not increase in proportion to the size of original data. This ensures the scalability of our algorithm and makes it very applicable for quality assessment of large-scale data sets. Additionally, the feature could be used to repair the reduced or distorted data for quality improvement. Finally, our approach can be treated as a new way to evaluate the uncertainty introduced by different versions of data.
机译:质量评估在数据分析中起着至关重要的作用。在本文中,我们提出了一种减少参考量的体积数据质量评估方法。我们的算法从小波域的原始数据中提取重要的统计信息。使用提取的信息作为特征和预定义的距离函数,我们能够识别和量化缩小或失真的数据版本中的质量损失,而无需访问原始数据。我们的要素表示自然以多种尺度的形式进行组织,这有助于对具有不同分辨率的数据进行质量评估。该功能可以有效地压缩大小。我们已经对各种大小和特征的科学和医学数据集进行了算法实验。我们的结果表明,特征的大小不会与原始数据的大小成比例地增加。这确保了我们算法的可扩展性,使其非常适用于大规模数据集的质量评估。此外,该功能可用于修复减少或失真的数据以提高质量。最后,我们的方法可以视为评估不同版本数据引入的不确定性的新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号