首页> 外文期刊>IEEE transactions on visualization and computer graphics >Hierarchical Tensor Approximation of Multi-Dimensional Visual Data
【24h】

Hierarchical Tensor Approximation of Multi-Dimensional Visual Data

机译:多维视觉数据的分层张量逼近

获取原文
获取原文并翻译 | 示例

摘要

Visual data comprise of multi-scale and inhomogeneous signals. In this paper, we exploit these characteristics and develop a compact data representation technique based on a hierarchical tensor-based transformation. In this technique, an original multi-dimensional dataset is transformed into a hierarchy of signals to expose its multi-scale structures. The signal at each level of the hierarchy is further divided into a number of smaller tensors to expose its spatially inhomogeneous structures. These smaller tensors are further transformed and pruned using a tensor approximation technique. Our hierarchical tensor approximation supports progressive transmission and partial decompression. Experimental results indicate that our technique can achieve higher compression ratios and quality than previous methods, including wavelet transforms, wavelet packet transforms, and single-level tensor approximation. We have successfully applied our technique to multiple tasks involving multi-dimensional visual data, including medical and scientific data visualization, data-driven rendering and texture synthesis.
机译:视觉数据包括多尺度和不均匀的信号。在本文中,我们利用这些特征并开发了一种基于分层张量的变换的紧凑数据表示技术。在这种技术中,原始的多维数据集被转换为信号的层次结构,以暴露其多维结构。层次结构每个级别上的信号都进一步分为多个较小的张量,以暴露其空间不均匀的结构。使用张量逼近技术对这些较小的张量进行进一步变换和修剪。我们的分层张量逼近支持渐进式传输和部分解压缩。实验结果表明,与小波变换,小波包变换和单级张量逼近等方法相比,我们的技术可以实现更高的压缩率和质量。我们已成功地将我们的技术应用于涉及多维可视数据的多个任务,包括医学和科学数据可视化,数据驱动的渲染和纹理合成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号