首页> 外文期刊>Visualization and Computer Graphics, IEEE Transactions on >Exemplar-based Visualization of Large Document Corpus (InfoVis2009-1115)
【24h】

Exemplar-based Visualization of Large Document Corpus (InfoVis2009-1115)

机译:大型文档语料库的基于示例的可视化(InfoVis2009-1115)

获取原文
获取原文并翻译 | 示例

摘要

With the rapid growth of the World Wide Web and electronic information services,text corpus is becoming available on-line at an incredible rate.By displaying text data in a logical layout (e.g., color graphs),text visualization presents a direct way to observe the documentsas well as understand the relationship between them.In this paper, we propose a novel technique, Exemplar-based Visualization (EV), to visualizean extremely large text corpus. Capitalizing on recent advances in matrixapproximation and decomposition, EV presents a probabilistic multidimensional projection modelin the low-rank text subspace with a sound objective function. The probability of each document proportion to the topics is obtained through iterative optimization andembedded to a low dimensional space using parameter embedding.By selecting the representative exemplars, we obtain a compactapproximation of the data. This makes the visualization highly efficient and flexible. In addition, the selected exemplars neatly summarize the entire data set and greatly reduce the cognitiveoverload in the visualization, leading to an easier interpretation oflarge text corpus. Empirically, we demonstrate the superior performance of EVthrough extensive experiments performed on the publicly available text data sets.
机译:随着万维网和电子信息服务的迅猛发展,文本语料库正以令人难以置信的速度在线提供。通过以逻辑布局(例如彩色图)显示文本数据,文本可视化提供了一种直接的观察方法在本文中,我们提出了一种新的技术,即基于示例的可视化(EV),以可视化极大的文本语料库。利用矩阵近似和分解的最新进展,EV在具有可靠目标函数的低秩文本子空间中提出了概率多维投影模型。通过迭代优化获得每个文档与主题比例的概率,并使用参数嵌入将其嵌入到低维空间中。通过选择代表性示例,我们获得了数据的紧凑近似。这使可视化变得高效而灵活。此外,选定的示例巧妙地总结了整个数据集,并极大地减少了可视化过程中的认知超载,从而使大型文本语料库的解释更加容易。通过经验,我们通过对公开文本数据集进行的广泛实验证明了EV的卓越性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号