首页> 外文期刊>Visualization and Computer Graphics, IEEE Transactions on >Tuner: Principled Parameter Finding for Image Segmentation Algorithms Using Visual Response Surface Exploration
【24h】

Tuner: Principled Parameter Finding for Image Segmentation Algorithms Using Visual Response Surface Exploration

机译:调谐器:使用视觉响应曲面探索的图像分割算法的原则参数查找

获取原文
获取原文并翻译 | 示例

摘要

In this paper we address the difficult problem of parameter-finding in image segmentation. We replace a tedious manual process that is often based on guess-work and luck by a principled approach that systematically explores the parameter space. Our core idea is the following two-stage technique: We start with a sparse sampling of the parameter space and apply a statistical model to estimate the response of the segmentation algorithm. The statistical model incorporates a model of uncertainty of the estimation which we use in conjunction with the actual estimate in (visually) guiding the user towards areas that need refinement by placing additional sample points. In the second stage the user navigates through the parameter space in order to determine areas where the response value (goodness of segmentation) is high. In our exploration we rely on existing ground-truth images in order to evaluate the "goodness" of an image segmentation technique. We evaluate its usefulness by demonstrating this technique on two image segmentation algorithms: a three parameter model to detect microtubules in electron tomograms and an eight parameter model to identify functional regions in dynamic Positron Emission Tomography scans.
机译:在本文中,我们解决了图像分割中参数查找的难题。我们用一种系统地探索参数空间的有原则的方法代替了通常基于猜测和运气的乏味的手动过程。我们的核心思想是以下两个阶段的技术:我们首先对参数空间进行稀疏采样,然后应用统计模型来估计分段算法的响应。统计模型包含估计不确定性的模型,我们将其与实际估计结合使用,以(通过视觉方式)通过放置其他采样点将用户引导至需要细化的区域。在第二阶段中,用户在参数空间中导航,以确定响应值(分割的优度)高的区域。在我们的探索中,我们依靠现有的真实图像来评估图像分割技术的“优势”。我们通过在两种图像分割算法上演示该技术来评估其实用性:用于检测电子断层图中微管的三参数模型和用于识别动态正电子发射断层扫描的功能区域的八参数模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号