首页> 外文期刊>Visualization and Computer Graphics, IEEE Transactions on >Mesh-Driven Vector Field Clustering and Visualization: An Image-Based Approach
【24h】

Mesh-Driven Vector Field Clustering and Visualization: An Image-Based Approach

机译:网格驱动的矢量场聚类和可视化:基于图像的方法

获取原文
获取原文并翻译 | 示例

摘要

Vector field visualization techniques have evolved very rapidly over the last two decades, however, visualizing vector fields on complex boundary surfaces from computational flow dynamics (CFD) still remains a challenging task. In part, this is due to the large, unstructured, adaptive resolution characteristics of the meshes used in the modeling and simulation process. Out of the wide variety of existing flow field visualization techniques, vector field clustering algorithms offer the advantage of capturing a detailed picture of important areas of the domain while presenting a simplified view of areas of less importance. This paper presents a novel, robust, automatic vector field clustering algorithm that produces intuitive and insightful images of vector fields on large, unstructured, adaptive resolution boundary meshes from CFD. Our bottom-up, hierarchical approach is the first to combine the properties of the underlying vector field and mesh into a unified error-driven representation. The motivation behind the approach is the fact that CFD engineers may increase the resolution of model meshes according to importance. The algorithm has several advantages. Clusters are generated automatically, no surface parameterization is required, and large meshes are processed efficiently. The most suggestive and important information contained in the meshes and vector fields is preserved while less important areas are simplified in the visualization. Users can interactively control the level of detail by adjusting a range of clustering distance measure parameters. We describe two data structures to accelerate the clustering process. We also introduce novel visualizations of clusters inspired by statistical methods. We apply our method to a series of synthetic and complex, real-world CFD meshes to demonstrate the clustering algorithm results.
机译:在过去的二十年中,矢量场可视化技术发展非常迅速,但是,通过计算流动力学(CFD)可视化复杂边界面上的矢量场仍然是一项艰巨的任务。部分原因是由于建模和仿真过程中使用的网格具有较大的,非结构化的自适应分辨率特性。在各种各样的现有流场可视化技术中,矢量场聚类算法的优点是可以捕获域中重要区域的详细图片,同时提供不重要区域的简化视图。本文提出了一种新颖,强大,自动的矢量场聚类算法,该算法可在CFD的大型,非结构化,自适应分辨率边界网格上生成矢量场的直观且有洞察力的图像。我们的自下而上的分层方法是第一个将基础矢量场和网格的属性组合成统一的错误驱动表示的方法。该方法背后的动机是CFD工程师可以根据重要性提高模型网格的分辨率。该算法具有几个优点。簇是自动生成的,不需要表面参数化,并且可以有效处理大型网格。保留网格和矢量场中包含的最具启发性和最重要的信息,而在可视化中简化不太重要的区域。用户可以通过调整聚类距离度量参数的范围来交互式控制详细程度。我们描述了两种数据结构以加速聚类过程。我们还介绍了受统计方法启发的新颖的集群可视化。我们将我们的方法应用于一系列合成的和复杂的,真实世界的CFD网格,以演示聚类算法的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号